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Abstract—With the growing effort to reduce power consumption in machines, fault

tolerance becomes more of a concern. This holds particularly for large-scale

computing, where execution failures due to soft faults waste excessive time and

resources. These large-scale applications are normally parallel in nature and rely

on control structures tailored specifically for parallel computing, such as locks and

barriers. While there are many studies on resilient software, to our knowledge none

of them focus on protecting these parallel control structures. In this work, we

present a method of ensuring the correct operation of both locks and barriers in

parallel applications. Our method tracks the memory locations used within parallel

sections and detects a violation of the control structures. Upon detecting any

violation, the violating thread is rolled back to the beginning of the structure and

reattempts it, similar to rollback mechanisms in transactional memory systems.

We test the method on representative samples of the BigDataBench kernels and

find it exhibits a mean error reduction of 93.6% for basic mutex locks and barriers

with a mean 6.55% execution time overhead at 64 threads. Additionally, we provide

a comparison to transactional memory methods and demonstrate up to a mean

57.5% execution time overhead reduction.

Index Terms—Algorithmic resilience, barriers, fault tolerance, locks, parallel

programming
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1 INTRODUCTION

PROGRAM reliability is a major concern throughout many fields of
computing. Applications that cannot reliably produce correct solu-
tions are hardly useful. As chip designers drive to reduce power con-
sumption, the voltage levels separating logic 0 and logic 1 become
closer and provide less of an error margin. This increases the proba-
bility of bit flips during execution, where a 0 becomes a 1 or vice
versa. Depending on the locations of these bit flips, they can directly
interfere with programbehavior and produce unexpected results.

Errors during execution can reveal themselves in different
ways, including hangs, crashes and silent data corruptions (SDC).
Crashes are the most obvious, where the process simply exits sud-
denly. Hangs can be more deceptive as the application may still
seem to be doing work while actually making no progress. Most
difficult to detect during execution are SDC, where a value used by
the program is modified without causing a crash or hang. For
example, one of the operands for an addition is corrupted, result-
ing in an incorrect output value. This can become particularly dan-
gerous when errors propagate from one variable to another as the
program continues to execute [16]. These errors waste time and
resources as they go undetected.

While hardware solutions like error correcting memory (ECM)
exist [6], they can be expensive to apply and carry overhead. This
has led to an interest in software methods for fault tolerance. These

methods typically achieve good error coveragewith varying overhead
costs depending on their implementation details. Software fault toler-
ance methods [11] for computing involve both a detection stage and a
correction stage respectively for identifying and recovering from
errors. In order to trigger correctionmechanisms, the detectionmecha-
nism must first identify an error. Most methods exploit features spe-
cific to the algorithms in question to identify these irregularities
during execution [12], [16], or require replication and comparison of
the process periodically during execution to ensure correct behavior
[3]. Newer approaches relying on machine learning to identify pro-
gramdeviation have also been introduced [14].

Correction mechanisms typically utilize a form of checkpointing
for error recovery [9], [13]. Checkpointing involves taking snapshots
of the process during execution and restoring to a previous correct

snapshot upon detecting an error [13]. This can be done at varying
granularity and frequency based on the application. Checkpointing
is a relatively simple method that works well for crashes and hangs,
but can be insufficient for SDC as the error can go unnoticed and
result in erroneous checkpoints. In order to alleviate this, some sys-
tems require saving multiple checkpoints and more frequent check-
pointing, involving undesirably higher overhead.

These detection and correctionmethods are extremely important
for large-scale computing, where processesmay run formany hours
or even days on multiple nodes. If an SDC occurs early during exe-
cution, the algorithm could run for a long duration before the error
is noticed, wasting substantial time, resources and energy. These
programs are typically parallel in nature, employing fundamentally
different techniques to solve problems. They commonly rely in part
on synchronization mechanisms such as locks and barriers for shar-
ing information among threads and ensuring coherence. However,
these mechanisms themselves can be vulnerable to errors, leading
to error behavior that occurs only within parallel programs. To our
knowledge, there is little previous work aimed at protecting these
synchronization mechanisms from transient faults. Application
checkpointing systems can solve crashes and hangs resulting from

errors in synchronization mechanisms but require additional detec-
tion for SDC. Transactionalmemory has been proposed as amethod
to protect code executions from concurrency bugs [15], though its
focus is on programmer errors not transient faults.

In this work we present a method for identifying and correcting
violations of these synchronization mechanisms caused by transient
faults via local logging systems. Tracking thread locations during exe-
cution reveals violations of the synchronization mechanisms. We
implement a local checkpointing and recovery mechanism for the
threads through Intel Pin [7] by exploiting the conceptual properties
of these mechanisms. We include an investigation into the results of
faults within these synchronization components to demonstrate the
effectiveness of such methods, and a measurement of the overhead
costs for implementation. Finally, we provide a comparison with
transactional memory, another form of local logging and rollback for
parallel systems that can act as an alternative for lock-based mecha-
nisms. Our system implements similar logging mechanisms to an
eager transactional memory system, but it benefits from simplified
conflict detectionwhen fewer conflicts can occur. Note that our mech-
anism also differs from conventional checkpointing in that it conducts
logging at each parallel control structure (locks and barriers) in prepa-
ration for rolling back, if required, as opposed to collecting system exe-
cution states periodically or adaptively [13] under conventional
checkpointing.

The contributions of this work can be summarized as follows:

� We examine vulnerability of BigDataBench kernels [1] to
soft faults within concurrency control mechanisms during
execution.
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� We design and develop a logging mechanism based on
transactional memory to detect and correct the resulting
concurrency bugs by enforcing the control mechanisms.

� We demonstrate a mean 93.6% error coverage from the
resulting concurrency bugs caused by these soft faults with
a mean 6.55% overhead in the execution time at 64 threads.

� We compare the overhead of our developed logging mech-
anism against a full transactional memory system and find
up to a mean 57.5% reduction in execution time overhead
relative to transactional memory.

2 BACKGROUND

2.1 Concurrency Control

As previously mentioned, many fault tolerant methods exploit pro-
gram features to increase coverage and reduce overhead. We focus
specifically on locks and barriers as our synchronization structures.
These fundamental mechanisms provide building blocks for more
complex parallel data structures. However, these locks and barriers
perform different functions and present different vulnerabilities.
Locks protect critical sections of code, where only one thread
should enter at any given time. Violations can cause race condi-
tions where multiple threads access values at the same time. Fail-
ing to unlock locks, or poorly coordinating the order with which a
thread claims multiple locks, can also lead to deadlocks, halting
execution progress. Locks can be employed in either a fine-grained
or coarse-grained manner. Coarse-grained locking protects a large
amount of code that may not all be needed by the thread. It is easier
to implement at the cost of performance, as more threads compete
for the critical section. Fine-grained locking by comparison enables
more parallelism by locking small sections of code that are specifi-
cally necessary for the thread, but it is difficult to implement and
may be more prone to deadlocking.

Barriers by comparison act as a trap, where no thread is allowed
to pass until all involved threads have reached the barrier. Barriers
are commonly used with an alternating computation and commu-
nication paradigm. When a thread finishes computation and needs
to share information, each thread waits until every thread has com-
pleted computation and is ready for sharing. This prevents threads
from overwriting values that are still needed by other threads, or
reading old values that are no longer valid. Violations of the barrier
would cause threads to sneak past, potentially causing these prob-
lems. Both locks and barriers are typically implemented using
atomic operations that allow a thread to perform a combination of
reads and writes as one single operation, ensuring coherence
among multiple threads operating on a shared value. The most
common example is the compare-and-swap (CAS), which com-
pares a value m in memory to a given value v, and writes a third
value to memory if m and v are equal.

2.2 Transactional Memory

There are other methods to ensure thread coherence besides
directly using locks and barriers. The most relevant to note here is
transactional memory. By automatically fine-grained locking indi-
vidual memory locations, developers do not need to manually
implement locking mechanisms. Instead, a thread simply marks
the beginning and the end of a transaction, wherein all operations
will be executed as if they were atomic. If there are conflicts due to
multiple threads modifying the same memory locations, one
thread is chosen to commit its transaction while others are forced
to reattempt. These transactional memory-based systems provide
an alternative for developers, potentially allowing for greater par-
allelism in their fine-grained nature. By being aware of how
threads operate on a memory location (read versus write), such a
system can also allow multiple reads simultaneously as memory is
then not modified. Transactional memory has previously been

adopted to address concurrency bugs which result from developer
errors but are not transient faults [15].

Transactional memory systems have been implemented both in
hardware [10] and in software [4]. Both implementation methods
have their respective benefits, with hardware systems typically
having better performance in exchange for flexibility and simplic-
ity. Transactional memory systems have also been proposed for
accelerators like GPUs [2], [5]. As shown in the following sections,
we utilize methods similar to eager transactional memory to pro-
tect coarse-grained locks and barriers. While similar to transac-
tional memory, it is considerably simpler due to a limitation in the
types of conflicts that may arise.

3 MOTIVATION

It is important to note that transient errors in these parallel pro-
grams may differ considerably from those found in sequential pro-
grams. In sequential programs, faults may cause crashes, hangs or
incorrect output by modifying pointers, loop control structures or
variables holding important data. In parallel programs, crashes,
hangs and SDC can all result from faults targeting parallel control
structures like locks and barriers. For example, a fault that occurs
in data used within or leading up to ”xchg” or CAS instructions
may cause the synchronization mechanism to fail. These failures
can result in crashes, hangs, or SDC when threads violate concur-
rency control, either through race conditions in critical sections or
accessing improperly synchronized data. SDC caused by these fail-
ures can further propagate into different errors, which may be dif-
ficult to identify, locate and recover from. Due to the different
nature of these errors, we make the first attempt to detect and cor-
rect them in non-traditional manners, as discussed in Section 4.

We aim demonstrate the importance of protecting concurrency
controlmechanisms in parallel applications by examining the vulner-
ability of three representative benchmarks of the BigDataBench ker-
nels under 2, 4, and 8 threads. The full list representative benchmarks
for the BigDataBench kernels is shown in Table 1. We simulate tran-
sient faults using the Intel Pin Fault Injector (PINFI) [8]. As the errors
can occur in different locations in each trial, we simulate transient
faults rather than hardware faults. This automated fault injection tool
targets instructions within select functions and modifies the bits to
simulate soft errors during execution. For these experiments,we limit
injection to the synchronization mechanisms contained within the
programs.We inject a single fault into every lock encountered during
execution. Hence, the number of faults injected for one trial equals

TABLE 1
Execution Outcomes for Each Benchmark With (Prot) and Without

(Base) Our Protection Mechanism

Category Benchmark Outcome ER %

Correct SDC Hang Crash

Transform FFT-base 0 1000 0 0
Operations FFT-prot 962 0 31 7 96.2
Linear LU-base 831 169 0 0
Algebra LU-prot 986 0 12 2 91.7
Sorting radix-base 733 267 0 0

radix-prot 959 0 32 9 84.6
Graph bfs-base 387 283 316 14
Operations bfs-prot 974 0 17 9 95.8
Sampling mh-base 645 272 73 10

mh-prot 984 0 13 3 95.5
Statistics wc-base 501 469 27 3
Operations wc-prot 980 0 13 5 96.4
Set union-base 387 334 244 35
Operations union-prot 975 0 18 7 95.9

A total of 1000 trials has been executed for each benchmark under 64 threads.
ER %: The error reduction percentage when comparing the number of error
occurrences between the base and prot models.
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the number of locks encountered over the course of execution. The
results from these trials are shown in Fig. 1.

It is evident that as the number of threads increases, error fre-
quency also increases. Having more threads in contention for the
control structures results in more CPU time spent waiting at these
structures during execution. As more instructions are executed
involving these wait loops, it becomes more likely for errors to
break these loops and thus break the control structures. It is worth
noting the variety of error profiles among benchmarks. FFT is
completely vulnerable to SDC, while radix is only mildly vulnera-
ble. In comparison, BFS contains vulnerabilities not present in the
other two, including a sizable number of crashes and some hanging
executions. These outcomes are caused by soft fault injection into
the control structures which can cause race conditions, deadlock,
or direct crashes as shown.

Algorithm 1. Lock Error Detection and Correction

Input: The instruction pointer p for the entry point of the criti-
cal section, the current thread id tid, and a dictionary of
lock ownership status S

1: Atomically attempt to set S½p� ¼ tid
2: if S½p� ¼ tid then
3: Current thread successfully marked as owner, proceed to

the critical section
4: else
5: Send rollback signal to S½p�
6: Clear S½p�
7: Roll back to p to reattempt lock acquisition
8: end if

Which outcomes are observed depends heavily on the algorithm
itself. Programs like BFS that rely heavily on pointers experience
more crashes as errors due to failed synchronization may corrupt
these pointers and result in erroneous memory access. Conversely,
programs that include many logical or arithmetic instructions like
FFT are more vulnerable to SDC as errors due to failed synchroniza-
tion are more likely to simply modify data and not cause crashes.
This observation supports other works in that the use of algorithm-
specific methods for detection and correction throughout the entire
execution, may be more efficient than generic methods, confirming
the importance of protecting locks and barriers.

4 DESIGN

4.1 Detection

In order to detect these violations, we implement a logging mecha-
nism through Intel Pin [7] similar to an eager transactional memory
system. The tool identifies marked barriers and locks in the binary
and tracks their program locations during execution. This allows

us to identify at what points which threads reside in critical sec-
tions or beyond barriers. Whenever multiple threads are detected
within a critical section simultaneously, we know that its associ-
ated lock has been broken by faults. Similarly, if a thread ever
passes a barrier before other threads are able to reach it, we know
that the barrier had broken. Fig. 2 provides an example of both suc-
cessful and recovered execution paths.

Before entering a critical section, a thread must pass through
both the original lock and the following protection functions,
marked as (1) in Fig. 2. The log tracks a thread’s entrance to the crit-
ical section and executes Algorithm 1 to detect if the thread violates
the exclusivity of the critical section. The green line shows a thread
which executes without interruption. The orange line (thread 1)
shows a thread that is interrupted whereas the red thread (thread
2) erroneously breaks the lock and enters the critical section. When
thread 1 enters the critical section first, it is marked as the owner of
the lock within the log and can progress into the critical section.
When thread 2 enters the critical section before thread 1 has exited
and released ownership, the logging system is aware that the lock
has broken for thread 2 or thread 1 and thus correction is
attempted.

Additional work is necessary to ensure locks are correctly
unlocked when leaving a critical section. This is different from
atomicity violations where multiple threads enter the critical sec-
tion, possibly leading to deadlocks and program hangs instead
since no threads are then able to enter the critical section. To
address this form of fault, we track which locks are owned by
which threads. Upon exiting a critical section, if a lock is still
owned by any thread no longer within the associated critical sec-
tion, we can correctly identify the occurrence of an error, resulting
in failure to release the lock. This occurs in stage (3) of Fig. 2.

A similar method is used for detecting errors within barriers as
illustrated in Algorithm 2. Note that all updates to counters are
performed atomically to avoid race conditions. By inserting func-
tions directly before and after a barrier, we can identify when a
thread enters and exits the barrier. If any thread attempts to exit
the barrier before all involved threads have reached the barrier, it
has violated the expected behavior of the barrier and is identified
as an error. This requires knowledge of the number of threads that

Fig. 1. Execution outcome breakdowns for various benchmarks under 2, 4, and 8
usable threads.

Fig. 2. Execution flowchart showing executions with no conflicts (green), immedi-
ate rollback (red) and forced rollback (orange).
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are involved in the barrier, which can be given as a parameter, col-
lected from the initialization of the barrier object, or assumed by
default to be the number of threads in use by the process. If the bar-
rier in question can be encountered multiple times, additional
checks are performed before Line 2 to ensure re-entering threads
do not interfere with exiting threads.

Algorithm 2. Barrier Error Detection and Correction

Input: The instruction pointer p for the barrier and the number
of threads involved in the barrier n

1: Initialize entrance_counter to n, exit counter to 0
When a thread attempts to enter the barrier:

2: Decrement entrance_counter
When a thread attempts to exit the barrier:

3: if entrance_counter is not 0 then
4: Roll thread back to the barrier and wait
5: else if exit_counter is not n� 1 then
6: Increment exit_counter
7: else
8: Reset counters to initial values
9: end if

4.2 Correction

Having detected the presence of errors, a thread can attempt local
recovery via a rollback. This local recovery is similar to an aborted
transaction in transactional memory systems. For barriers, rolling
back is simple as errors are detected before threads can modify
shared memory. When a thread is found to be exiting the barrier
before all other threads have arrived, it is rolled back and forced to
wait. When all threads arrive, the offending thread can then exit
correctly together with all others. An example of both correct and
erroneous executions is shown in Fig. 3, where (1) and (2)mark the
entry and the exit stages respectively. This reinforces the concep-
tual behavior of the barrier to ensure proper synchronization.

The process is somewhat more complex for locks as threads
may modify shared variables. Additionally, we cannot be certain
which thread within the critical section entered erroneously. Thus,
both are rolled back and the logged writes are cleared, marked as
(2) in Fig. 2. Only one thread has reached the point of modifying
shared variables, so the rollback is relatively simple. This means
that the log does not have to store backup values for a memory
location for each thread. Since only one thread has been modifying
shared variables, it can simply restore previous values while other
threads reattempt the lock. Due to our method of conflict detection,
we do not encounter situations where two threads can both modify
a shared variable before the conflict is detected, which simplifies
the logging and rollback processes. We recommend using re-
entrant locks in conjunction with our system, as the correct owner

will then be able to re-enter the critical section after a rollback.
Upon successfully exiting the critical section, thread information is
cleared from the log, allowing other threads to enter. Ultimately
this mimics the conceptual function of the lock to ensure the cor-
rectness of the critical section. In summary, each of these correcting
methods enforces the associated control structure behavior,
thereby preventing the propagation of SDC.

4.3 Examples

For clarity, we provide two following examples to cover both
thread and barrier encounters. Both examples will utilize two
threads, thread A and B, to showcase the protection and correction
mechanisms.

Locks. Suppose thread A encounters a lock at instruction p. The
thread attempts to lock the lock, and our system attempts to claim
ownership of the lock for thread A in line 1 of Algorithm 1. If
thread A successfully claims ownership (line 2), we assume thread
A has appropriately locked the lock and can continue with the criti-
cal section (line 3) while logging the usage of shared variables.
Assume thread B encounters the lock while thread A is in the criti-
cal section. It is possible that thread B passes the lock entrance due
to a fault in its or thread A’s locking process. Either way, the fault
is detected in line 2 when thread B fails to take ownership. Both
threads are then forced to reattempt acquisition of the lock in lines
5-7, rolling back any changes made by thread A.

Barriers. Suppose thread A encounters a barrier expecting two
threads at instruction p before thread B. When thread A enters the
barrier to wait, marked as (1) in Fig. 3, entrance_counter is decre-
mented from n ¼ 2 to n ¼ 1 as shown in line 2 of Algorithm 2.
Thread A should not pass this barrier until thread B arrives to
ensure proper synchronization. If an error occurs to cause thread A
to pass the barrier early, the check in line 3 succeeds and line 4 is
executed, forcing thread A back to waiting. When thread B arrives
at the barrier, we again execute line 2. Both threads attempt to exit
the barrier, this time failing the check on line 3. Both threads can
thus exit the barrier, one executing line 5-6 to increment the exit_-
counter and the other simply exiting and resetting the initial values.

4.4 Implementation

For testing, we implement this method via Intel Pin as a Pin tool,
which makes it flexible to work with any binary compiled for Intel
processors. Intel Pin allows for both static and dynamic analyses
and modifications of a program. As such, not only can we imple-
ment the transaction begin and end functions statically before exe-
cution, we are also able to track program locations and the control
structure status dynamically during execution. Fig. 4 shows the
overall workflow of the tool. Upon loading the binary, Pin applies
the tools to the binary in two steps, called the instrumentation and
the inspection passes. Instrumentation traverses the program stati-
cally to identify any instructions of interest, namely those related
to the locks and barriers we aim to protect. It then inserts inspec-
tion functions into the binary that will be executed during run-
time. At run-time, these functions intervene in the program execu-
tion, carrying out the logging methods as necessary to track the
program status. Specifically, we locate every lock and barrier used
by the program and add protection functions to each of them.
These protection functions initialize the logging system with the
program counter and thread information. This allows the logging

Fig. 3. Execution flowchart of barrier protection showing correct (green) and erro-
neous (red) threads.

Fig. 4. Design work flow with Intel Pin.
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system to detect the violations of the associated synchronization
mechanisms.

Although our implementation is purely software, it could be
augmented with hardware support. Our synchronization protec-
tion mechanisms need the additions of (1) an on-chip lock owner-
ship directory, whose entries, say S[p], record the ID of the thread
entering Lock p; see Algorithm 1, (2) an on-chip SRAM partitioned
statically into zones, with Zone p for holding the log associated
with Thread S[p], and (3) control logic for generating appropriate
control signals and maintaining ownership directory entries. Both
(1) and (2) are in the form of on-chip SRAM to improve perfor-
mance. Additional instructions, similar to previous atomic instruc-
tions, could also be included to manage the lock ownership and
logging operations involved with these added on-chip SRAM
zones.

5 EVALUATION

5.1 Vulnerability and Resilience

In order to test the effectiveness of our system, we execute the
benchmark programs both with and without our protection mecha-
nisms. All experiments have been run on a workstation with two
Intel Xeon Platinum 8260 processors which support up to 48
threads each when enabling Hyperthreading, resulting in 96 total
available threads. We test only up to 64 threads as some bench-
marks require the thread count to be a power of two. As we have
displayed in Fig. 1, higher thread count results in greater vulnera-
bility, so unless otherwise noted, our experiments use the full 64
threads possible on our test machine. Once again, we use PINFI [8]
to simulate transient faults by injecting one fault into each lock
encountered during execution. For the following experiments, we
restrict fault injection to both the synchronization code regions and
our added protection code regions where applicable. We must
inject into our added protection mechanisms to properly evaluate
the vulnerability of the final system. This prevents full error cover-
age as the added code itself is vulnerable, although to a lesser
extent.

The BigDataBench benchmarks and their categories [1] are
listed in Table 1. Specifically, we test the Fast Fourier Transform
(FFT), LU matrix decomposition (LU), radix sorting (RADIX),
graph operations (BFS), sampling operations (MH, Metropolis-
Hastings implementation of the Markov chain Monte Carlo
method), WordCount (WC), and set union (UNION). We have cho-
sen not to test the Logical Operations category of the BigDataBench
suite as its many samples are intrinsically sequential. Therefore,
we have covered 7 out of 8 categories of parallel BigDataBench ker-
nels. Both the baseline and protected versions of each benchmark
are run through Intel Pin to provide a proper comparison between
the two test cases with the maximum number of threads. The pro-
tection mechanisms are simply disabled in the baseline case. All

benchmarks are executed with 64 threads. Our results are dis-
played in Fig. 5 and Table 1.

As shown previously in Fig. 1, different benchmarks have dif-
ferent vulnerability profiles. FFT, LU and radix sort show varying
degrees of SDC vulnerability, while the remaining four display
considerable numbers of SDC and crashes. However, it is evident
that the protection system removes almost all occurrences of
crashes, hangs and SDC during the execution of these programs by
correcting the soft faults within the control structures. It achieves a
mean 93.6% error coverage across all kernels, with RADIX having
the lowest coverage of 84.6% and WC having the highest coverage
at 96.4%. We believe RADIX and LU show lower error coverage as
they are already more resilient to errors and therefore there are
fewer to correct. Interestingly, the protected benchmarks only con-
tain crash and hang errors without any SDC occurrences. These
crash and hang errors are preferable over SDC as they are more
easily detectable and correctable during execution. Note that we
do not claim that this method will address all possible errors that
can occur in the program in general. Rather, the method focuses
only on errors within the synchronization mechanisms, with errors
beyond these synchronization structures deemed outside the scope
of this work. By reducing these errors we prevent error propaga-
tion into other forms that may be more difficult or costly to detect
with other methods.

5.2 Overhead

Execution Time Overhead. To properly compare the cost of our sys-
tem, we also investigate execution time overhead incurred by the
implemented protection mechanisms on each benchmark under 4
to 64 threads. Both the baseline and the protected version are again
executed through Intel Pin to provide an accurate comparison of
the overhead caused by the system itself. We calculate the execu-
tion time overhead using Overhead ¼ Tprot�Tbase

Tbase
where Tprot is the

average execution time of 1000 trials of the protected benchmarks,
and Tbase is the average execution time of 1000 trials of the unpro-
tected benchmarks. These results are shown in Fig. 6, where most
benchmarks are found to have an overhead of less than 10% at all
thread counts, with a mean overhead of at most 6.55% under 64
threads. These overhead levels are acceptable considering the
improvement in error occurrences and the complete removal of
SDC errors. It is clear that both BFS and LU have somewhat higher
overhead than the others at many thread counts. BFS is a larger
application with greater memory requirements, leading to rela-
tively higher overhead when experiencing context switching. Both
BFS and LU also contain more complex and frequent concurrency
control use, resulting in a higher accumulated overhead. As a
result, it may not be wise to apply the protection mechanisms to
every program; instead they should be applied on an algorithm-to-
algorithm basis.

Memory Overhead. For further evaluation of the system, we mea-
sure the memory overhead of our system on all benchmarks under

Fig. 5. Execution outcome breakdowns versus benchmarks under 64 threads. Fig. 6. Time overhead percentages for various benchmarks under 4 to 64 threads.
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4 to 64 threads, as shown in Fig. 7. To calculate this, we record the
memory high-water mark measured from within the program dur-
ing execution. Note that the memory overhead is very small rela-
tive to the total amount of memory used by the programs. Most
benchmarks use a maximum of 0.6-2.5GB memory during execu-
tion. As such, the overhead of 300-700KB is relatively negligible.
As expected, we see larger overheads at higher thread counts.

5.3 Comparison With Transactional Memory

We additionally provide a comparison against complete software
transactional memory systems, since our protection mechanism
relies on similar checkpointing and rollback operations. Specifi-
cally, we test against the C++ atomic library and its included trans-
actional memory interface. We do not compare with hardware
transactional memory systems, which are incomparable to our soft-
ware-based protection mechanism. Specifically, since we enforce
the high-level behavior of locks, our system handles entire critical
sections in addition to logging individual memory locations. As
such, we can frequently detect conflicts when threads first enter a
critical section rather than at every individual memory access.
Given that our logging mechanisms are less intrusive than full
transactional memory, they should therefore demonstrate lower
overhead. To test this, we modified kernels for evaluation, with the
results for LU and FFT shown in Figs. 8 and 9 respectively. Our
baseline protects the shared variables using standard pthread locks
and barriers for comparison against both our protection mecha-
nism and the transactional memory implementation. We test the
programs under 4 to 64 threads to gain insights into how the sys-
tems handle varying numbers of parallel agents. According to
Figs. 8 and 9, the largest gap in execution time overhead overhead
percentages occurs for FFT under 16 threads, with a difference of
10%. In total, we observe a geometric mean reduction of 47.3% and
57.5% in overhead for LU and FFT respectively. As we can see, the
log-based protection mechanism consistently outperforms its

transactional memory system counterpart at each thread count.
While not displayed here, comparative overhead results for the
remaining tested benchmarks exhibit similar performance gaps.
This supports our previous claim that the protection mechanism is
more lightweight than full transactional memory systems, result-
ing directly from simplifying many of the conflicts it must handle.

We also compare the memory usage for both our system and
the transactional memory implementation, shown in Figs. 10 and
11. At all thread counts, our system consistently uses considerably
less memory than the transactional memory implementation. Since
our system can resolve conflicts sooner due to detecting the higher-
level concurrency failures, it does not have to log as many values
at one time for potential rollbacks, reducing the total memory
used. Again, note that these values are still small relative to the
total memory consumption of these benchmarks.

Fig. 7. Memory overhead for all benchmarks under 4 to 64 threads.

Fig. 8. Comparative time overhead percentages of our protection mechanism
(prot) and transactional memory (TM) for LU under 4 to 64 threads.

Fig. 9. Comparative time overhead percentages our of protection mechanism (prot)
and transactional memory (TM) for LU under 4 to 64 threads.

Fig. 10. Comparative memory overhead our of protection mechanism (prot) and
transactional memory (TM) for LU under 4 to 64 threads.

Fig. 11. Comparative memory overhead our of protection mechanism (prot) and
transactional memory (TM) for FFTunder 4 to 64 threads.
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6 CONCLUSION

In this work we have presented a method for ensuring the correct
and reliable operation of synchronization structures within parallel
programs, specifically focusing on locks and barriers. By utilizing a
logging system that tracks program locations, we can identify vio-
lations of these structures and recover from them locally, rather
than requiring system wide checkpointing and recovery methods.
Through our experiments, we demonstrate that this method can
achieve a reduction in error of up to 93.6% for the representative
BigDataBench kernels while maintaining acceptably low overhead,
averaging 6.55% above the baseline. When compared with transac-
tional memory, we find up to a 57.5% reduction in execution time
overhead.

REFERENCES

[1] BigDataBench Benchmark Suite. Accessed: Oct. 28, 2021. [Online].
Available: https://www.benchcouncil.org/BigDataBench/index.html

[2] S. Chen and L. Peng, “Efficient GPU hardware transactional memory
through early conflict resolution,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2016, pp. 274–284.

[3] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann,
“Combining partial redundancy and checkpointing for HPC,” in Proc.
IEEE 32nd Int. Conf. Distrib. Comput. Syst., 2012, pp. 615–626.

[4] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based software trans-
actional memory,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 12,
pp. 1793–1807, Dec. 2010.

[5] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt, “Hardware
transactional memory for GPU architectures,” in Proc. 44th Annu. IEEE/
ACM Int. Symp. Microarchit., 2011, pp. 296–307.

[6] R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit-error-correcting codes
with applications to flash memory,” IEEE Trans. Inf. Theory, vol. 59, no. 4,
pp. 2315–2327, Apr. 2013.

[7] Intel Corporation, ”Pin 3.2 User Guide.” Accessed: Oct. 28, 2021. [Online].
Available: https://software.intel.com/sites/landingpage/pintool/docs/
81205/Pin/html/

[8] Intel Pin Fault Injector (PINFI). Accessed: Oct. 28, 2021. [Online]. Available:
https://github.com/DependableSystemsLab/PINFI

[9] I. Jangjaimon and N. Tzeng, “Effective cost reduction for elastic clouds
under spot instance pricing through adaptive checkpointing,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 396–409, Feb. 2015.

[10] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “DHTM: Durable hard-
ware transactional memory,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Com-
put. Archit., 2018, pp. 452–465.

[11] T. LeCompte, W. Legrand, S. Chen, and L. Peng, “Soft error resilience of big
data kernels through algorithmic approaches,” J. Supercomput., vol. 73,
pp. 4739–4772, Nov. 2017.

[12] H. Li, Z. Chen, and R. Gupta, “Parastack: Efficient hang detection for MPI
programs at large scale,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., 2017, pp. 1–12.

[13] P. Sigdel and N.-F. Tzeng, “Coalescing and deduplicating incremental
checkpoint files for restore-express multi-level checkpointing,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 12, pp. 2713–2727, Dec. 2018.

[14] T. E. Thomas, A. J. Bhattad, S. Mitra, and S. Bagchi, “Sirius: Neural network
based probabilistic assertions for detecting silent data corruption in parallel
programs,” in Proc. IEEE 35th Symp. Reliable Distrib. Syst., 2016, pp. 41–50.

[15] H. Volos, A. J. Tack, M. M. Swift, and S. Lu, “Applying transactional
memory to concurrency bugs,” ACM SIGPLAN Notices, vol. 47, no. 4,
pp. 211–222, 2012.

[16] R. Xiaoguang, X. Xinhai, W. Qian, C. Juan, W. Miao, and Y. Xuejun,
“GS-DMR: Low-overhead soft error detection scheme for stencil-based
computation,” Parallel Comput. vol. 41, pp. 50–65, 2015.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 23,2022 at 14:53:48 UTC from IEEE Xplore.  Restrictions apply. 

https://www.benchcouncil.org/BigDataBench/index.html
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://github.com/DependableSystemsLab/PINFI


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


