
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 1

Sobol Sequence Optimization for
Hardware-Efficient Vector Symbolic Architectures

Sercan Aygun ID , Member, IEEE and M. Hassan Najafi ID Senior Member, IEEE

Abstract—Hyperdimensional computing (HDC) is an emerging
computing paradigm with significant promise for efficient and ro-
bust learning. In HDC, objects are encoded with high-dimensional
vector symbolic sequences called hypervectors. The quality of
hypervectors, defined by their distribution and independence,
directly impacts the performance of HDC systems. Despite a
large body of work on the processing parts of HDC systems, little
to no attention has been paid to data encoding and the quality
of hypervectors. Most prior studies have generated hypervectors
using inherent random functions, such as MATLAB’s or Python’s
random function. This work introduces an optimization tech-
nique for generating hypervectors by employing quasi-random
sequences. These sequences have recently demonstrated their
effectiveness in achieving accurate and low-discrepancy data
encoding in stochastic computing systems. The study outlines the
optimization steps for utilizing Sobol sequences to produce high-
quality hypervectors in HDC systems. An optimization algorithm
is proposed to select the most suitable Sobol sequences via indexes
for generating minimally correlated hypervectors, particularly in
applications related to symbol-oriented architectures. The perfor-
mance of the proposed technique is evaluated in comparison to
two traditional approaches of generating hypervectors based on
linear-feedback shift registers and MATLAB random functions.
The evaluation is conducted for three applications: (i) language,
(ii) headline, and (iii) medical image classification. Our exper-
imental results demonstrate accuracy improvements of up to
10.79%, depending on the vector size. Additionally, the proposed
encoding hardware exhibits reduced energy consumption and a
superior area-delay product.

Index Terms—hyperdimensional computing, language process-
ing, optimization, Sobol sequences, stochastic computing.

I. INTRODUCTION

HYPERDIMENSIONAL computing (HDC) [1]–[3] is a
trending paradigm that mimics important brain function-

alities toward high-efficiency and noise-tolerant computation.
The paradigm has shown significant promise for efficient and
robust learning [4]. HDC can transform data into knowledge
at a very low cost and with better or comparable accuracy
to state-of-the-art methods for diverse learning and cognitive
applications [5], [6]. The fundamental units of computation in
HDC are high-dimensional vectors or “hypervectors” (consist-
ing of +1s and −1s, or logic-1s and logic-0s) constructed from
raw signals using an encoding procedure (Fig. 1(a)). During
training, HDC superimposes together the encodings of signal
values to create a composite representation of a phenomenon
of interest known as a “class hypervector” (Fig. 1(b)). In
inference, the nearest neighbor search identifies an appropriate
class for the encoded query hypervector (Fig. 1(c)). Hypervec-
tors have dimensionality, D, often in the orders of thousands
of dimensions. A hypervector has a distributed, holographic
representation in which no dimension is more important than
others. The hypervectors in an HDC system are generated
to have almost zero similarity. Previous works targeted near-
orthogonal hypervectors by generating random hypervectors
with approximately the same number of +1s and −1s [7]–[10].
But the inherent randomness in these conventionally generated
hypervectors can lead to poor performance, particularly with
smaller Ds. Low classification accuracy is likely in cases with
poor distribution and undesired similarity between hypervec-
tors.

Sercan Aygun is with the School of Computing and Informatics, Uni-
versity of Louisiana at Lafayette, Lafayette, LA, 70503, USA. E-mail: ser-
can.aygun@louisiana.edu. M. Hassan Najafi is with the Electrical, Computer,
and Systems Engineering Department at Case Western Reserve University,
Cleveland, OH, 44106, USA. E-mail: mhassan.najafi@case.edu.

hD h2 h1

Encoded Query

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

δ1

δ2

δk

M
a

x

Si
n

gl
e

-P
a

ss

Tr
a

in
in

g

En
co

d
in

g Similarity

Trained Model
Encoded

Data

f1

fnFe
at

u
re

 V
e

ct
o

r

f1

fnFe
at

u
re

 V
e

ct
o

r

a
b c

T
ra

in
 D

a
ta

Te
st

 D
a

ta

T
ra

in
 D

a
ta

Te
st

 D
a

ta

hD h2 h1

Encoded Query

C1D C12

C2D C22

CkD Ck2

C11

C21

Ck1

δ1

δ2

δk

M
a

x

Si
n

gl
e

-P
a

ss

Tr
a

in
in

g

En
co

d
in

g Similarity

Trained Model
Encoded

Data

f1

fnFe
at

u
re

 V
e

ct
o

r

a
b c

T
ra

in
 D

a
ta

Te
st

 D
a

ta

Fig. 1. Classification with hyperdimensional computing.

Bit-stream computing, also known as stochastic computing
(SC), has been the subject of a large body of recent research
efforts due to attractive advantages such as very-low imple-
mentation cost and high tolerance to noise [11]. SC operates
on random sequences of binary bits, called bit-stream. Similar
to hypervectors in HDC, stochastic bit-streams are holographic
with no bit significance. Complex arithmetic operations are
simplified to basic logic operations in SC. For instance,
multiplication can be performed using a single AND gate [12].
However, the accuracy of SC operations is severely affected by
the random fluctuations in the bit-streams. Some operations,
such as multiplication, similarity or correlation between bit-
streams further degrades the quality of results. Often very long
bit-streams need to be processed for accurate results. Recently,
low-discrepancy (LD) bit-streams were suggested to improve
the quality of SC operations while reducing the length of bit-
streams [13]–[15]. Logic-1s and logic-0s are uniformly spaced
in these bit-streams. Hence, the streams do not suffer from
random fluctuations. The correlation issue is further addressed
with these bit-streams by using different LD distributions. LD
bit-streams have been recently used to perform completely
accurate computations with SC logic [16]. The LD bit-streams
are generated by using quasi-random numbers such as Sobol
sequences.

This work takes advantage of LD sequences to improve
the data encoding of HDC systems. To the best of our
knowledge, this study is the first work to optimize Sobol
sequences to enhance the orthogonality of hypervectors in
HDC systems. Unlike the previous studies that use pseudo-
random sequences for random vector generation, this work
provides quasi-randomness and guarantees independence be-
tween hypervectors by using optimized LD Sobol sequences
[17]. The primary distinction between pseudo-randomness
and quasi-randomness lies in the deterministic, uniform, and
fast converging distribution of numbers in LD sequences.
Quasi-random sequences are designed to fill the space more
uniformly without clustering, a common issue in pseudo-
random sequences. This uniform distribution is particularly
beneficial in high-dimensional spaces where pseudo-random
sequences tend to leave large gaps. Moreover, quasi-random
sequences can achieve faster convergence rates compared to
pseudo-random sequences. Pseudo-randomness yields nearly
random results and may produce different outcomes with each
iteration, whereas recurring LD sequences exhibit determin-
istic behavior. In contrast to pseudo-random sequences that
can only provide near-orthogonal hypervectors, quasi-random
sequences can achieve ideal orthogonality and, thus, high ac-
curacy in HDC systems. We first inspect the Sobol sequences
obtained from the MATLAB tool. The hypervector representa-
tion in HDC is similar to the bit-stream representation in SC;
hence, we utilize stochastic cross-correlation (SCC) [18], a
metric used for determining the similarity of stochastic bit-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4615-7914
https://orcid.org/0000-0002-4655-6229

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 2

streams, in evaluating hypervectors. We produce a matrix of
hypervectors from Sobol sequences. The SCC metric is then
used to measure the correlation of each hypervector pair,
yielding a distance matrix. Any cell in the distance matrix
shows the absolute deviation from the SCC=0, indicating
independent hypervectors. We propose an algorithm to select
the best independent Sobol-based hypervectors. We utilize
the selected hypervectors for vector encoding in an HDC
system case study. We apply our proposed scheme to language,
headline, and medical image classification problems [6], [19],
[20]. We further evaluate the hardware efficiency of the new
encoding module for HDC systems. In summary, the main
contributions are as follows:

• For the first time, we utilize optimized LD Sobol se-
quences in data encoding of HDC and unveil their po-
tential performance.

• We propose an algorithm for selecting independent hy-
pervectors by utilizing SCC metric.

• We find the top-performing Sobol sequences for generat-
ing independent hypervectors.

• We compare the performance of Sobol-based hypervec-
tors with two traditional approaches of encoding hyper-
vectors using 1) linear-feedback shift registers (LFSRs)
and 2) the MATLAB random functions.

• Our experimental results show an accuracy improvement
of up to 10.79% for text classification.

• Our new encoder module exhibits significant savings in
energy consumption and area-delay product.

The rest of the paper is organized as follows: Section II
presents some basic concepts of HDC and SC. Section III de-
scribes the proposed methodology and presents the optimiza-
tion of the best independent sequence selection. Experimental
results are presented in Section IV for the language, newspaper
headline, and medical image classification problems. Potential
impact and the future work of this study are discussed in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Hyperdimensional Computing (HDC)
HDC is a brain-inspired computational model based on the

observation that the human brain operates on high-dimensional
representations of data. Reasoning in this robust model of
computation is done by measuring the similarity of hyper-
vectors [21]. Hypervectors are D-dimensional sequences with
+1 and −1 values (corresponding to logic-1 and logic-0 in
hardware, respectively). Prior works on HDC target near-
orthogonal hypervectors with random distribution and approxi-
mately the same number of +1 and −1. So, the threshold value
(T) is set to 0.5 [6]. In HDC applications, using hypervectors
with long lengths (in the range of 10,000 lengths or more) is
common to reduce the similarity between the encoded vectors
and improve the quality of results.

The basic operations in HDC are multiplication (⊕: logical
XOR), addition (Σ: bitwise population count), and permutation
(Π: shifting). These operations are invertible and have linear
time complexity. HDC systems first encode data with a proper
technique according to the classification or cognitive tasks.
Spatial, temporal, and histogram-based encoding techniques
are used in the literature [22]. Encoders are divided into
(i) record-based and (ii) n-gram-based approaches [23], [24].
The record-based approaches assign level hypervectors (L,
e.g., pixel intensity values in image processing application)
and position hypervectors (P , e.g., randomly generated vectors
for pixel positions). Feature positions on data are encoded via
P s that are orthogonal to each other. On the contrary, level
hypervectors are expected to have correlations between neigh-
bors. The final hypervector is denoted as H = ΣN

i=1(Li⊕P i),
where N is the feature size. In image processing case, the
pixels are considered as features, and the result of XORing
each position and level hypervector (P × L) is accumulated

Hh

+1 -1 +1 -1 -1 … +1 +1 -1

+1 +1 +1 -1 +1 … -1

-1 -1 -1 +1 -1 … +1 -1

HDC Hardware Architecture – Record-based

Grayscale
Intensity
Values

𝑳

m
 ×

n
 ×
D

MEM

Level
Hypervectors 𝑷Position

Hypervectors

m
 ×

n
 ×
D

MEM

XOR

Q

Q

D Q

Q

D...

HDC Hardware Architecture – n-gram-based

Class Hypervector

Binarize (Sign)

1 0 1 0 0

MEM

+22 -32 +64 -4 -47

Accumulation

Random Source Comparator

x

LFSR

n-grams
``This study was prepared for IEEE TCAD``

trigrams

HT

Hh

Hi

Rotated

-1 +1 -1 … -1

×2

×1

n-gram hypervector

class

symbols

`a`
`b`
`c`
`d`
…
`z`
#

HYPERVECTORS
-1 +1 +1 -1 -1 … +1
+1 +1 -1 -1 +1 … +1
-1 +1 -1 -1 +1 … +1
+1 -1 -1 -1 -1 … +1

-1 -1 -1 -1 -1 … +1
+1 +1 +1 +1 +1 … -1

…

H

Random Source

LFSR 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

Comparator

MEM

Shift&Rotate

Shift&Rotate
XOR

Q

Q

D Q

Q

D...

Class Hypervector

Binarize (Sign)

1 0 1 0 0

MEM

+22 -32 +64 -4 -47HT

Hi

(b)

(a)

①
②

③ ④

⑤

①
③ ④

⑤

Random Source
LFSR② 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

Comparator

m×n = N features

m

n

N=3
features

D vector size

``This stu..`` ``This stu..``+ +``This stu..``

``Thi``

``his`` ``is ``+ + ``s s``+…
each n-gram
hypervector’s

corresponding bit
is accumulated

each ______
hypervector’s

corresponding bit
is accumulated

𝑷×𝑳

𝑷×𝑳

𝑷×𝑳

Fig. 2. Architecture and workflow overview of n-gram-based and record-
based encoding for language processing and image classification. The steps
involved in (a) n-gram-based and (b) record-based encoding methodologies.

to have a final D-sized vector that represents the overall im-
age. The accumulation is performed considering the position-
wise bits of different P × L vectors. The second category
utilizes n-gram-based statistics like those in natural language
processing systems. These encoders use rotationally permuted
hypervectors, which are orthogonal to each other. The final
hypervector is H = L1⊕πL2⊕πN−1LN , where πn denotes
the n-times rotationally permuted L. All samples in the
training dataset are evaluated for H, and each contributes (via
accumulation) to the corresponding class hypervector, which
is the trained model of the overall system. For instance, in the
text processing case, each incoming n sub-group of characters
yields a single vector after shift-rotate-XOR, which is then
accumulated for each one-character-shift n-gram vector. The
accumulation is performed considering the position-wise bits
of each n-gram vector. During the inference, the test data is
encoded (h), and the similarity check is performed between
each test query and the class hypervector [25]. In our encoding
scheme with Sobol sequences, we utilize both n-gram- and
record-based approaches.

Fig. 2 provides an overview of the architecture and work-
flow involved in n-gram-based (Fig. 2(a)) and record-based
(Fig. 2(b)) encoding for language processing and image clas-
sification problems. These models are integral to our study,
as we consider both flows and hardware modules involved.
Fig. 2(a) illustrates threshold-based hypervector generation
and an example of n=3-gram-based encoding. We use +1
to denote logic-1 and -1 to denote logic-0. After generating
random numbers in step ➀ and comparing them with the
threshold (T) per symbol, the hardware block in step ➁
applies simple shifts and rotates to ensure orthogonality in
the resulting vector obtained from the hardware XOR gate in
step ➂. Each n-gram hypervector from XOR blocks contributes
to the corresponding class hypervector via the accumulator in
step ➃, depicted with a Johnson counter here. Finally, after all
class members finish contributing to the signed accumulations,
step ➄ conducts simple binarization by a trivial subtraction (or
comparison) from a threshold.

Fig. 2(b) depicts two generators for converting symbolic
positions and numerical pixels into hypervectors. The remain-
ing hardware blocks are similar to Fig. 2(a): XOR between P
and L in step ➂, accumulations in step ➃, and binarization in
step ➄. The primary distinction between the two approaches
lies in memory occupation; symbol-only-based representation
occupies relatively less memory due to the absence of one
group of hypervectors: numerical-related level hypervectors
(L). Both approaches need multiple random number genera-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 3

TABLE I
COMPARISON OF SC AND HDC

SC HDC
Atomic

Building Block
Bit-stream [26]

(size of N)
Hypervector [27]

(size of D)
Data

Representation
Unipolar or Bipolar Bit-streams [26]

Unary Bit-streams [28]
Low-Discrepancy Bit-streams [16]

Random Hypervectors [6]

Metric Stochastic Cross-Correlation [18]
Cosine Similarity [6], [29]

Dot Product [30]
Hamming Distance [23]
Overlap Coefficient [23]

Target
Representation

Uncorrelated Bit-streams [18]
Correlated Bit-streams [28] Orthogonal Hypervectors [20]

LD: Sobol

Seq.1 Seq.1

Pseudo-random

S
e
q
.
2

S
e
q
.
2

Fig. 3. Comparing the distribution of quasi-random Sobol and pseudo-random
sequences.

tors. In this study, we utilize pre-ready sequences, eliminating
the need for multiple random scalar trials, a departure from
prior approaches.

B. Stochastic Computing (SC)
SC is a re-emerging paradigm that uses the power of

processing random bit-streams to reduce the complexity of
arithmetic operations to the level of individual logic gates [26],
[31]. Let X ∈ Z+

0 be a scalar value to be represented
with a stochastic bit-stream. A bit-stream X of size N
has PX = X

N probability for the occurrence of 1s. Unlike
conventional binary radix, stochastic bit-streams are free of
bit significance. The ratio of the number of 1s to the length
of bit-stream determines the bit-stream value. For instance,
X1 = 10101010 represents PX1 = 4

8 and X2 = 10111101
represents PX2 = 6

8 . Applying bit-wise AND operation to these
bit-streams produces an output bit-stream Y = 10101000 with
probability PY = 3

8 that is equal to PX1 × PX2. For correct
functionality and accurate result, the two operand bit-streams
need to be independent or uncorrelated. Accurate conversion
of scalar values to stochastic bit-streams while guaranteeing
independence between them has been a long-time challenge in
SC [18]. The state-of-the-art work has addressed this challenge
by encoding data to LD bit-streams [14], [31]. The input
data is compared with quasi-random numbers such as Sobol
numbers from a Sobol sequence (please see Section II-C
and Appendix). The comparison output generates an LD bit-
stream representing the input value. A 1 is generated if
scalar > random number. A 0 is produced otherwise. For
an N -bit long bit-stream, the input data is compared with N
Sobol numbers. Table I provides a comparison between the
SC and HDC computational models.

C. From Pseudo-randomness to LD: Sobol Sequences
Similar to SC, HDC systems require an accurate represen-

tation of uncorrelated vectors for high accuracy and random
sources for hypervector generation. Randomness can be quan-
tified by the occurrence of the numbers in the random se-
quence. Analyzing the distribution of the numbers, particularly
among multiple random sources, gives interesting information
regarding their orthogonality. The correlation between two
random sources can be quantified by using metrics such as
Hamming distance, dot product, or cosine similarity.

Pseudo-random sources rely on mathematical algorithms
to produce sequences of numbers. Given the same initial
condition (seed), the algorithm generates the same sequence of
numbers. Well-known examples of pseudo-random algorithms

0 1/4 1/2 3/4 11

0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16 3/16 11/16 5/16 13/16 9/16 1/16

0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16 5/16 13/16 3/16 11/16 7/16 15/16

1/4 = 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

3/4 = 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1

3/16 = 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
x

Fig. 4. Illustration of the first two Sobol sequences generated using
MATLAB’s sobolset function. The recurrence property and progressive
precision are evident from the repeating and rotating patterns in binary vectors.
Each vector contains subgroups with internal repetition or rotation.

are the Linear Congruential Generator, Mersenne Twister,
and XOR-shift [32]. Quasi-randomness, on the other hand,
holds a property of patterns that, while not genuinely random,
possess certain characteristics of randomness. Quasi-random
sequences distribute points more uniformly in space, exhibit-
ing a more even distribution compared to pseudo-random
sequences. Recurrence is another property of these sequences.
A notable example of such sequences are Sobol or Halton
sequences [33], [34]. Fig. 3 compares the distribution of quasi-
random Sobol sequences and pseudo-random sequences. The
x-y axes represent two different sequences.

This work employs Sobol sequences as the quasi-random
source for HDC. Sobol sequences can be pre-generated using
built-in algorithms in MATLAB tool [35] or Python pack-
ages [36]. These sequences exhibit LD properties, achieved
through some basic computations on some “direction num-
bers” (v1, v2, ...). Fig. 4 presents the first two Sobol sequences
from the MATLAB tool. To show the recurrence property,
we categorize consecutive groups of

√
D=22 numbers. When

generating hypervectors, a threshold value (default 0.5) is
compared with the sequence numbers. If the threshold value
is greater or less than the sequence number, a 1 or 0 value
is recorded, respectively. Fig. 4 shows examples of generating
binary hypervectors for threshold values 1/4 and 3/4. With
ideal orthogonality, a dot-product operation on the two hyper-
vectors gives a result similar to the product of the threshold
values. The example in Fig. 4 is an ideal case as the output
vector represents 3/16, which is equal to 1/4×3/4. We use a
similar approach to show ideal orthogonality of quasi-random
sequences over pseudo-random sequences. Table II reports
the mean absolute error (MAE) results over 10,000 randomly
sampled input pairs. As it can be seen, Sobol-based vector
generation enables accurate multiplications with zero error.
Conversely, when using LFSR-based pseudo-random sources,
the MAE between the obtained and the expected product
is non-zero, which exhibits inferior performance of pseudo-
random sequences in generating orthogonal hypervectors.

The comparison between quasi- and pseudo-random sources
can be extended to the distribution of Hamming distances
between hypervectors. Fig. 5 illustrates the distribution of
Hamming distances between pairs of hypervectors generated
using Sobol sequences (Fig. 5(a)) and pseudo-random sources
(binomial in Fig. 5(b) and LFSR in Fig. 5(c)). The distribution
plots depict histograms of 10, 000 samples for generating hy-
pervectors, with distance values represented on the x-axis and
corresponding probabilities on the y-axis. Schmuck et al. [8]
elucidate the use of Hamming distance as a metric for as-
sessing orthogonality, where a score (d) ranging between 0
and 1 signifies the degree of orthogonality: d=0.5 indicates
nearly orthogonal, d=0 correlated, and d=1 anti-correlated
hypervectors.

In our experiment, we represent random scalar pairs as hy-
pervectors. We generate 10, 000 pairs of random scalar values
in the range of [0, 1] (test samples) and convert them into
hypervectors using both Sobol and pseudo-random sequences.
We compare them based on the Hamming distance. For the
Sobol case, we use the first two Sobol sequences from the
MATLAB tool. For the second case, a binomial distribution,
and for the third case, LFSRs serve as the random sources
for generating D-dimension hypervectors. Upon comparing
the three plots for D=128, we can see that values around
0.5 are more predominant in the Sobol-generated hypervectors

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 4

TABLE II
MAE OF SOBOL-BASED VS. LFSR-BASED PAIRS OF HYPERVECTORS FOR DOT-PRODUCT OPERATION

Pseudo-random (LFSR) MAE – D Vector Size
(D=16)
0.0638

(D=32)
0.0308

(D=64)
0.0225

(D=128)
0.0142

(D=256)
0.0074

(D=512)
0.0035

(D=1,024)
0.0019

(D=2,048)
0.0012

(D=4,096)
5.95e-04

(D=8,192)
4.68e-04

(D=16,384)
2.11e-05

(D=32,768)
1.77e-05

Quasi-random (Sobol) MAE – D Vector Size
(D=16)

0.00
(D=32)

0.00
(D=64)

0.00
(D=128)

0.00
(D=256)

0.00
(D=512)

0.00
(D=1,024)

0.00
(D=2,048)

0.00
(D=4,096)

0.00
(D=8,192)

0.00
(D=16,384)

0.00
(D=32,768)

0.00

(b)(a) (c)

Fig. 5. Histogram of randomly sampled scalars’ 1-to-all hypervector Ham-
ming distances (d) with hypervector generation sources of (a) Sobol, (b)
Binomial random MATLAB function, and (c) LFSR. D=128.

TABLE III
TOTAL POINTS (%) IN 1-VARIANCE DISTANCE FROM d=0.5 MEAN POINT

Hypervector
(D) Sobol LD Pseudo-random

(MATLAB)
Pseudo-random

(LFSR)
D=128 69.41% 69.25% 69.17%
D=256 69.70% 69.67% 69.41%
D=512 70.82% 70.56% 70.60%
D=1,024 70.13% 70.11% 70.10%
D=2,048 70.66% 70.57% 70.60%
D=4,096 71.55% 71.25% 71.53%
D=8,192 71.89% 71.30% 71.65%
D=16,384 72.32% 72.16% 72.30%
D=32,768 73.57% 73.31% 73.50%

compared to those generated pseudo-randomly. We measured
the percentage of values lying within one standard deviation of
the mean (d=0.5), which serves as the orthogonality target. For
the Sobol-based hypervectors, this percentage was 69.41%;
for the binomial pseudo-random case, it was 69.25%, and
for the LFSR, it was 69.17%. These results indicate a higher
concentration of values around the target orthogonality point
for the Sobol sequences. Table III provides the percentages of
values lying within one standard deviation for varying D-sizes,
further corroborating the effectiveness of Sobol sequences,
especially for larger D values. The LD sequences consistently
outperform pseudo-random ones in achieving orthogonality.

III. PROPOSED METHODOLOGY

A. From Bit-Streams to Hypervectors
SC and HDC both exploit a redundant holographic data

representation. The holographic term refers to a mode of rep-
resentation where information is distributed equally across all
components. This ensures maximum robustness and efficient
utilization of redundancy [2]. While conventional binary radix
assigns weight to each bit depending on its significance, SC
and HDC systems utilize unweighted sequences of binary
bits [27], [37]. In both computational model, the encoding
includes a comparison with a random value, R. A scalar
value in SC and a threshold value in HDC are the actors
of this comparison. Figs. 6(a) and (b) show examples of the
traditional approaches for encoding data in SC and HDC. In
Fig. 6(a), the scalar value X is encoded to a bit-stream of size
N = 8 representing the probability PX . The random source in
Figs. 6(a) and (b) is a number generator that generates random
numbers in the [0, 1] interval. Random vector generation for
HDC is shown in Fig. 6(b). Here, the threshold value (T) is
0.5. Fig. 6(c) shows how data is encoded to an LD bit-stream
by exploiting a Sobol sequence.

The produced N -dimensional Sobol arrays with recurrence
relation are used as an ideal random source to generate

1 0 1 1 1 0 1 1

𝑁 = 𝟖

𝑋 = 𝟔

Random
Source

𝑷𝐱 =
𝟔

𝟖 ...
...

𝑹𝟏…𝑵 𝛜 [𝟎, 𝟏]

+1 +1 -1 +1 -1 -1 +1 -1

HDC

𝑻 = 𝟎. 𝟓

Random
Source

...
...

𝑹𝟏…𝑫 𝛜 [𝟎, 𝟏]

𝑿

SC

(a) (b)

𝑵𝒕𝒉 𝑫𝒕𝒉

𝐷 = 𝟖

1 1 1 0 1 1 1 0

𝑁 = 𝟖

𝑋 = 𝟔

LD
Sequence

𝑷𝐱 =
𝟔

𝟖

...

𝑳𝟏…𝑵 𝛜 [𝟎, 𝟏]

+1 -1 +1 -1 +1 -1 +1 -1

HDC

𝑻 = 𝟎. 𝟓

LD
Sequence

...
...

𝑳𝟏…𝑫 𝛜 [𝟎, 𝟏]

𝑿

SC

(c) (d)

𝑵𝒕𝒉 𝑫𝒕𝒉

𝐷 = 𝟖

𝑷𝐱 > 𝑹𝟏

𝑷𝐱 ≤ 𝑹𝟔 𝑻 ≤ 𝑹𝟔

𝑻 > 𝑹𝟏

1st Sobol Sequence

= 𝑳0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8…

1st Sobol Sequence

𝑳 =

𝑷𝐱 > 𝑳𝟏

0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8…

𝑻 > 𝑳𝟏
𝑻 ≤ 𝑳𝟔

𝑷𝐱 ≤ 𝑳𝟒
H

H

Fig. 6. (a) Conventional pseudo-random source-based stochastic bit-stream
generation, (b) traditional hypervector generation using a pseudo-random
source, (c) LD bit-stream generation using a Sobol sequence, and (d) utilizing
Sobol sequences for generating hypervectors.

-1 +1 -1 +1 -1 +1 -1 -1

+1 -1 -1 -1 +1 +1 -1 -1

𝑐 𝑏 𝑑 𝑏 𝑎 𝑑 𝑑

𝑎 = 1
𝑏 = 2
𝑐 = 2
𝑑 = 3𝑐

𝐷 = 8

= −0.111

SCC(H1, H2)

H1

H2

SCC(H1, H2)

+1 +1 +1 -1 -1 -1 -1 -1

+1 +1 +1 -1 -1 -1 -1 -1

𝑎 𝑎 𝑎 𝑑 𝑑 𝑑

𝑎 = 3
𝑏 = 0
𝑐 = 0
𝑑 = 5𝑑

𝐷 = 8

= 1

SCC(H3, H4)

H3

H4

SCC(H3, H4)

𝑑

(a)

(b)

Fig. 7. Correlation measurement of two sample hypervectors: (a) near-zero
correlation, (b) highly correlated.

accurate LD bit-streams. Sobol sequences have also been
successful in providing the needed independence between
stochastic bit-streams. Generating different LD bit-streams by
using different Sobol sequences is sufficient to guarantee inde-
pendence between bit-streams [16]. Motivated by the success
of using quasi-random numbers in SC, this work employs
Sobol sequences for generating hypervectors of HDC systems.
Fig. 6(d) presents the idea. We use Sobol sequences as the
random source to generate uncorrelated hypervectors with
desired ratio of +1 and −1. Conventionally, HDC systems sets
the threshold value (T) to 0.5 to generate hypervectors with
50% +1 and 50% −1. Unlike prior HDC systems, this work
explores a range of values for T to achieve the best accuracy
with Sobol-based hypervectors. The challenging optimization
problem is to determine the best set of Sobol sequences for
any T value. The merit metric for this optimization is SCC
as given in equation (1):

SCC =

{
ad−bc

D×min(a+b,a+c)−(a+b)×(a+c) , if ad > bc
ad−bc

(a+b)×(a+c)−D×max(a−d,0) , else
(1)

The a, b, c, and d variables in the SCC equation [18] are
the cumulative sum of overlaps between two hypervectors:
a = |{Hxi = Hyi = +1}|, b = |{Hxi = +1,Hyi = −1}|,
c = |{Hxi = −1,Hyi = +1}|, d = |{Hxi = Hyi = −1}|.
SCC is a value in the [−1,+1] interval. A zero or near-zero
SCC means uncorrelated hypervectors. SCC=+1 indicates a
positive correlation (totally similar), while SCC=−1 shows

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 5

0 1/2 1/4 3/4 1/8 5/8 3/8…

0 1/2 3/4 1/4 5/8 1/8 3/8…

0 1/2 1/4 … …

…

1st

𝑇 ∈ [0,1]

2nd

1111st

𝑆𝑜𝑏𝑜𝑙1111 × 𝐷

C1 C2

. . .

R1 1 |SCC| |SCC| |SCC| |SCC| |SCC| |SCC|

R2 |SCC| 1 |SCC| |SCC| |SCC| |SCC| |SCC|

. |SCC| |SCC| 1 |SCC| |SCC| |SCC| |SCC|

. |SCC| |SCC| |SCC| 1 |SCC| |SCC| |SCC|

. |SCC| |SCC| |SCC| |SCC| 1 |SCC| |SCC|

R1110 |SCC| |SCC| |SCC| |SCC| |SCC| 1 |SCC|

R1111 |SCC| |SCC| |SCC| |SCC| |SCC| |SCC| 1

+1 -1 +1 -1 +1 -1 -1

+1 +1 +1 -1 +1 -1 -1

-1 -1 -1 -1 -1 +1 -1

+1 -1 +1 +1 -1 +1

+1 +1 -1 -1 +1 +1 -1

-1 +1 +1 +1 -1 -1 +1

+1 -1 +1 +1 +1 -1 -1

H𝑦𝑝𝑒𝑟𝑣𝑒𝑐𝑡𝑜𝑟𝑠1111 × 𝐷
C1 CD

𝑇 ≤
𝑆𝑜𝑏𝑜𝑙(𝑖, 𝑗)?

YES NO

-1 +1

…

…

+1 -1 +1 -1 +1 -1 -1

+1 -1 +1 -1 +1 -1 -1

𝑎

H1

H1

…

1111

×

1111

C1110 C1111

𝑑 𝑎 𝑑 𝑎 𝑑 𝑑

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1111 × 1111

sortMin(sumColumns(𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆))

𝑰𝑛𝑫𝑒𝑿𝑒𝑠

Algorithm 1

σ σ σ σ σ σ σ

sumColumns(𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆)

𝐷
𝑖𝑠
𝑡𝑎
𝑛
𝑐𝑒

𝑽𝑨𝑳𝑈𝐸𝑆

1

1

1

1
𝐷
𝑖𝑠𝑡𝑎

𝑛
𝑐𝑒

𝑎𝑑 − 𝑏𝑐

𝐷 ×𝑚𝑖 𝑛 𝑎 + 𝑏, 𝑎 + 𝑐 −(𝑎 + 𝑏) × (𝑎 + 𝑐)

𝑎𝑑 − 𝑏𝑐

𝑎 + 𝑏 × 𝑎 + 𝑐 − 𝐷 ×𝑚𝑎𝑥(𝑎 − 𝑑, 0)

𝑎𝑑
>
𝑏𝑐

𝑒𝑙𝑠𝑒

|SCC| = absolute

𝑎 = 3
𝑏 = 0
𝑐 = 0
𝑑 = 4

𝑆𝐶𝐶
= 11

Algorithm 2

𝐷
𝑖𝑠𝑡𝑎

𝑛
𝑐𝑒

Algorithm 3

🔍 Algorithm 3

requires

𝑰𝑫𝑿

🔍
𝑰𝑫𝑿

𝑰𝑫𝑿

𝑰𝑫𝑿

𝑽𝑨𝑳𝑈𝐸𝑆

𝑽𝑨𝑳𝑈𝐸𝑆

𝑽𝑨𝑳𝑈𝐸𝑆*
*

*

1

1

1

… … … … … … …

1

1

1

*

*

*

C1 C2 Cm Cn C1111

C1 C2 Cn C1111

C1 C2 Cm Cn

𝑽𝑨𝑳𝑼𝑬𝑺

C2Cm C1

𝑰𝑛𝑫𝑒𝑿𝑒𝑠

C1...C1111

CnC1

Cm C2 C1Cn

MODE

𝐾 = 3
🗸× × × × 🗸🗸

… …C1
the most frequently
occurring indexes

𝐷
𝑖𝑠𝑡𝑎

𝑛
𝑐𝑒′

SORT

CONCAT

SORTED

C
O
N
C
A
T
E
N
A
T
E
D

SCC(H1, H1)

H1

H2

H1111

SCC(H1, H1)

SCC(H1, H2)

SCC(Hx, Hy)=

(a) (b) (c)

H…

H…

C: Column
R: Row

***𝐾 = 3

Cx Cy Cz

Cy

Cn

C2

winners

Fig. 8. The illustration of (a) Algorithm 1, (b) Algorithm 2, and (c) Algorithm 3.

Algorithm 1 Sobol-based Hypervectors Generation
Require: Sobol1111×D , T : threshold, D : Hypervectors size
Ensure: Hypervectors

1: for i = 1 : 1 : 1111 do
2: for j = 1 : 1 : D do
3: if T ≤ Sobol(i, j) then
4: Hypervectors(i, j) = −1
5: else
6: Hypervectors(i, j) = +1
7: end if
8: end for
9: end for

10: return Hypervectors

Algorithm 2 SCC of Hypervectors Cartesian Product
Require: Hypervectors,
Ensure: V AL, IDX , Distance

1: for i = 1 : 1 : 1111 do
2: for j = 1 : 1 : 1111 do
3: Distance(i, j)←
4: |SCC

(
Hypervectors(i, :), Hypervectors(j, :)

)
|

5: end for
6: end for
7: [V AL, IDX]← sortMin

(
sumColumns(Distance)

)
8: return V AL, IDX , Distance

a negative correlation (no overlap). Fig. 7 exemplifies two
pairs of hypervectors and their corresponding SCC values. All
hypervectors here have a probability 3/8 of observing +1. The
SCC value is calculated by finding the a, b, c, and d values.
The example in Fig. 7(a) includes two hypervectors with near-
zero SCC, while the hypervectors in Fig. 7(b) are identical
and so have SCC=1.

B. On the Decision of the Best-Performing Sobol Sequences
Selection of the top-K best uncorrelated (orthogonal) se-

quences over m is a challenging problem and requires opti-
mization. The complete heuristic solution space of this op-
timization has P (m,K) = m!

(m−K)! different candidates (via
permutation). In HDC, this problem turns out to be selecting
the best orthogonal hypervectors in the pseudo- or quasi-
random workspace. Algorithm 1 initiates the procedure for
generating Sobol-based hypervectors considering the quasi-
random space. We use the MATLAB tool and its built-in Sobol
sequence generator [38], which implements Joe and Kuo’s
method [39] as discussed in the Appendix. The maximum
number of Sobol sequences that MATLAB can produce is
1111. In Algorithm 1, D is the hypervector size. Thereby,

Algorithm 3 Minimum of Minima
Require: IDX , Distance, K
Ensure: SobolUncorrelated

1: for i = 1 : 1 : K do
2: minOFmin← sortMin

(
Distance(IDX(i), :)

)
3: ConcatenatedK×D ← CONCAT(minOFmin)
4: end for
5: SobolUncorrelated← MODE(ConcatenatedK×D.IDX , K)
6: return SobolUncorrelated

the Sobol matrix has a size of 1111×D. All Sobol numbers
are compared with the T value, and the results (−1 or +1)
are recorded in a Hypervectors matrix of 1111×D size.

Algorithm 1 returns the Hypervectors matrix. Algorithm 2
uses this matrix to generate an SCC-based Distance ma-
trix of Cartesian products. Each pair of Hx and Hy in
Hypervectors is compared using the SCC metric, yielding
the Distance matrix size of 1111 × 1111 that holds the
absolute values of SCC.

Lines 1 to 6 of Algorithm 2 build the Distance matrix by
calculating the SCC values. Any ith row and jth column in-
tersection holds the correlation coefficient between the ith and
jth hypervectors in the Hypervectors matrix. The Distance
matrix is a symmetric, square matrix holding SCC = 1s in
the diagonal elements (SCC(Hx,Hx) = 1.) After producing
the Distance matrix, the algorithm performs column-wise
operations to select the minimum distances at each column
(similarly, row-wise operations are possible due to symme-
try). Line 7 of Algorithm 2 first calculates the summation
of each Distance matrix column, and then sorts the results
of summations. The summation is a vector with 1 × 1111
elements. Minimum sorting is applied to find the values and
indexes of Sobol elements with minimum SCC. Figs. 8(a)
and (b) depict Algorithms 1 and 2, respectively. As it can be
seen, after obtaining the Hypervectors matrix by comparing
Sobol numbers with T , SCC measures the correlation of
the Cartesian-based hypervector pairs. The Distance matrix
is symmetric, and each color represents the absolute value
of an SCC. Fig. 8(b) shows how column-wise summation
is performed in Algorithm 2, yielding symbolic gray-tone
representation. After sorting, the values (V ALs) and indexes
(IDXs) are recorded. The top-K minimum values of these
elements are called the minima of the Distance matrix, and
the corresponding IDXs are used for the minimum of minima
in Algorithm 3, as depicted in Fig. 8(c).

Algorithm 3 returns a SobolUncorrelated vector, which
holds the K best uncorrelated Sobol indexes. The inputs of
the algorithm are IDXs and the Distance matrix from Algo-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 6

Acc

Sign

n-gram Hypervector

Acc Acc Acc Acc Acc Acc Acc

Sign Sign Sign Sign Sign Sign Sign

Text Hypervector

2D-1D

Sobol

Algorithm 1

Algorithm 2

Algorithm 3 12…m-1m

…

……

…
…

12D-1D …

LFSR

rand();

Random Function

HLFSR
HSobol

HRandom

2D-1D
12D-1D …

Letter1
Hypervectors

Lettern
Hypervectors

…

Letter 1 Hypervector HSobol1

HSobol2

HSoboln

HLFSR1

HLFSR2

HLFSRn

HRandom1

HRandom2

HRandomn

Letter 2 Hypervector

Letter n Hypervector

×

×

n-gram Hypervector

Acc Acc Acc Acc Acc Acc Acc

Sign Sign Sign Sign Sign Sign Sign

…

…
En
co
di
ng

Search

Text Hypervector

d

a

t

e

Text Hypervector

Alphabet

…

it is the date

c'est la daté

tas ir datums

tai dataLT
LV
FR

EN

…

Language Hypervector 1

Language Hypervector 3

Language Hypervector 2

Language Hypervector 4

…

*Similarity Measure

Similarity Measure

Similarity Measure

Similarity Measure

…

The closest similarity between text
hypervector and any language hypervector
indicates the language class.

* cosine similarity,dot product,
SCC, etc.

12D-1D …

+1,
-1

logic-1
logic-0

Cumulative sum
+1s & -1s
or logic-1s

𝐈.
𝐈𝐈.

𝐈. 𝐈𝐈.

Sign Threshold
K/2

③

④
⑤

②

①
MEM

Fig. 9. The overall architecture of the HDC language classifier.

④

Algorithm 1

LFSR

Algorithm 2

Algorithm 3

Encoding

Training

Training
Data

Item
Memory

Assoc.
Memory

+1 -1... -1

...
Class
C0D C02 C01

Encoding

Testing
Data

...

h1D

h12
h11

Similarity

query

Q

Q

D Q

Q

D...

Sign

Comparator

x

MEM

③

⑤

②
①

?

𝑳

𝑷

Fig. 10. The overall architecture of the HDC image classifier.

rithm 2, beside K, the number of to-be-selected Sobol indexes.
The top-K minimum distances and their indexes (IDXs) from
Algorithm 2 are used here. In Fig. 8(c), the selected IDXs
of the Distance matrix are pointed with black-colored rows.
Each row is further processed for the minimum SCCs. The
for loop in Algorithm 3 processes the K rows by sorting
and CONCATaneting them, producing a new Distance′ matrix
with a size of K×D. Finally, the Distance′ matrix is checked
with the MODE function to return the most repetitive IDXs
of the top-K minimum-valued columns. Column-wise frequent
index check allows us to see how repetitive Sobol elements are
in the minima of SCC distances. Fig. 8(c) depicts Algorithm 3
for K=3; the top-K=3 minimum of minima are selected for
the SobolUncorrelated vector. If any repetitive IDX occurs,
K is increased for the next available Sobol element to keep
the column list unique in SobolUncorrelated1×K .

C. The Overall Architecture
In this section, we present the overall HDC architecture.

Without loss of generality, we apply the proposed technique
to a word-processing HDC system for language classification
and an HDC system for image classification.

1) n-gram-based HDC Framework: In the first framework,
a hypervector is needed for each alphabet letter. Our ap-
proach uses Sobol-based hypervectors. Nonetheless, we also
implement the system with the MATLAB random function
and an LFSR-based random number generator for comparison
purposes. Sobol sequences are generated in a standard manner.
Nevertheless, the selection of the best Sobol sequences is
based on our optimization algorithms, which aim to achieve
high orthogonality. The overall architecture is shown in Fig. 9.
For each letter in the alphabet, hypervector generation is per-
formed with our Sobol-based technique, LFSR, and the MAT-
LAB built-in random function rand(), producing HSobol,
HLFSR, and HRandom, respectively. The n-gram approach
[23], is applied to the incoming data, i.e., n consecutive letters.

m Sobol LD Sequences

Selection of BEST K sequences among m

MedMNIST

1. CALCULATE 1-to-All Hypervectors

2. GENERATE Distance Matrix

3. SUM columns of Distance Matrix

4. SORT summation values

5. CONCAT the sorted minimums

6. MODE for most frequently indexes

Algorithms-1, 2,
and 3

SCC Metric, Eq. (1)

BEST K sequence IDs are ready
MEM

II

III

HDC Application ImageText

n-gram-based Record-based

Letter
Hypervector

Position & Level
Hypervector

GPUCPU

CPUID HW
Monitor

(a)

(c)

Runtime
Memory

Energy
Area×Delay

K hypervectors L1,L2,...,LK

SHIFTING

XORing

POP++

Read or Generate
Hypervectors

SIGN

x
times 1

time
1

time

(b)

Open HW
Monitor

training inference

K hypervectors,
Position & Level

XORing

POP++

SIGN

1
time

inference

1
time

x
times

training

CPU/GPU Embedded Sys. ASIC

I

Fig. 11. (a) Overall flow of the proposed optimization steps for top-performing
Sobol sequences. (b) Hardware details of the HDC architecture for the training
and inference phases. (c) Tools utilized in the experiments.

For the LFSR-based approach, random numbers are generated
using the maximal-period LFSRs described in [40] for each
length D. The initial seed value of the LFSRs is randomly
selected. Similar to Rahimi et al.’s HDC architecture in [6]
and [41], the calculation of an n-gram hypervector is done by
rotating the letter hypervectors, as shown in Fig. 9. We keep
a copy of the hypervectors generated by the three approaches
for this process. Then, the n-gram hypervector is accumulated.

During text hypervector generation, the accumulation op-
eration (Acc) is an algebraic summation of +1s and −1s
in hypervectors. The thresholding is applied via the sign
function. In hardware, the population count of logic-1s is used

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 7

TABLE IV
HARDWARE EFFICIENCY CONSIDERING THE EMBEDDED PLATFORM, CPU, GPU, AND ASIC DESIGN

Performance (i) Performance
in an Embedded
Platform (ARM)

(ii) CPU Workload
Performance

(Intel i5)

(iii) GPU Power Load
Performance

(NVIDIA Quadro 6000)

(iv) Encoding Module
ASIC Design

(45 nm)
D HV Generation Runtime Memory Average Max. Average Max. Energy Area×Delay

8192
n-gram

Pseudo-R. 1,068.3sec 18.3KB 10.6%(idle+9%) 15.2%(idle+13.2%) 0.354mW 0.402mW 16.88nJ 721.12×10−9

Sobol 687.4sec 17.8KB 9.4%(idle+7.4%) 12.1%(idle+10.9%) 0.036mW 0.256mW 2.69pJ 59.20×10−12

8192
Rec.-bas.

Pseudo-R. 3,148.6sec 7.6KB 16.4%(idle+11%) 17.6%(idle+14%) 0.412mW 0.524mW 27.36nJ 1256.17×10−9

Sobol 1,948.5sec 5.2KB 14.4%(idle+10%) 15.7%(idle+12.3%) 0.051mW 0.334mW 4.04pJ 102.56×10−12

for accumulation, followed by a thresholding operation by
comparison with K/2 (K is the total number of the contributing
n-gram hypervectors to the accumulator.) We proceed with
the former approach in our simulations by using algebraic
accumulation and sign-based thresholding. After iterating
over the incoming data to generate the text hypervectors, the
classification is performed in the search module by perform-
ing a similarity check between the text hypervector and the
language hypervector.

2) Record-based HDC Framework: In the second frame-
work, both level and position hypervectors are needed for
pixel values and pixel positions, respectively. Fig. 10 illustrates
the overall architecture of the HDC image classifier. We
employ two random sources for comparison purposes: the
LFSR method (pseudo-random), and the optimized Sobol
sequences (quasi-random) using our proposed approach. Dif-
ferent from the prior art, better orthogonality is targeted during
the intricate design of symbolic position hypervectors. Any
random sequence, either pseudo- or quasi-random, is tested
independently. Fig. 10 shows the overall hardware architecture,
generating P and L, XORing, accumulating result by D-type
flip-flops, and binarization by sign. The hardware flow for each
step aligns with Fig. 2. The training and testing methodologies
are also illustrated in Fig. 10.

IV. TESTS AND RESULTS

This section details the performance evaluations of the
proposed methodology. Fig. 11 shows the overall flow of
the optimization steps and the HDC training and inference
processes. Fig. 11(a) summarizes the optimization steps for
identifying the best-orthogonal supplier Sobol sequences. Ad-
ditionally, Fig. 11(b) presents a summary of operations and
hardware for both training and inference, for image (record-
based) and language-based (n-gram) applications. Notably, the
cost of inference matches that of a single training attempt. The
distinction lies in how each sample contributes independently
to the class hypervectors during training, with binarization
occurring only once all class samples are processed. Fig. 11(c)
showcases the tools used and performance metrics considered.

A. Hardware Performance
We first evaluate the hardware efficiency of the proposed

encoder module (all designs are in D=8192). We use four
hardware workspaces: (i) ARM-based embedded platform (a
resource-limited device with 700 MHz, 32-bit, single-core),
(ii) Central processing unit (CPU - Intel(R) Core(TM) i5-
10600K @4.10GHz), (iii) Graphics processing unit (GPU -
NVIDIA Quadro RTX 6000), and (iv) and an ASIC design
with 45 nm technology.

The first workspace considers two complete HDC systems
with a pseudo-random-based approach and a Sobol-based
approach. The overall system was implemented in C language
and deployed into the ARM processor. The random method
dynamically creates data with a built-in C language-based
rand function. On the other hand, the Sobol sequences are
pre-generated, stored in, and read from memory. Table IV
presents the performance (i.e., run-time and memory usage)

results. For the n-gram approach, the presented results are
based on the single-time hypervector assignments for each
letter; however, the training phase requires iteration for the
random method that severely worsens during training. Record-
based encoding for both P and L generations follow similar
procedures. As the total symbol (pixel) count for the medical
MNIST (medMNIST) [42] case study (28×28) is higher than
the language case, relatively more runtime load is expected.
However, compared to a 21-class language processing applica-
tion, 8-class medMNIST (BloodMNIST) image classification
requires relatively less model memory, as seen from the ARM-
based memory occupation.

Table IV also shows the CPU-based workload performances
of the encoding part of an HDC system. We iteratively (107
times) create an alphabet with letter hypervectors for language
processing and also create the position and level hypervectors
for image classification. We compare the workload brought
by the random-based and Sobol-based approaches in the
CPU. The iterations guarantee fairness in terms of possible
background tasks and processes. We also put an idle time
by waiting for stabilization before initiating each run. Ta-
ble IV shows the average and maximum of all iterations.
CPU workload during idle time and total increments on the
hypervector operations (idle + workload by vector generation
%) are recorded. The Sobol-based approach exhibits less load
compared to the pseudo-random case in both letter-processing
and image-processing problems. As images operate, both
average and maximum loads brought in record-based encoding
are higher than the n-gram case. We also report the GPU
power consumption for the hypervector operations. As it can
be seen, the Sobol-based approach provides nearly 10 times
lower power consumption in both case studies.

Last but not least, we implement an ASIC hypervector en-
coding module to evaluate the energy and area-delay product.
This design targets training-on-edge applications for future
HDC frameworks, necessitating a comprehensive encoding
module. For both n-gram- and record-based encoding archi-
tectures, corresponding to Fig. 2(a) and (b) (hardware in ➀,
➁, ➂, ➃, ➄), we devised a design for the pseudo-random case
comprising LFSR and Sobol sequences with recurrence prop-
erty. Table IV reports energy consumption and area×delay.
The Sobol approach yields significant outcomes in terms
of energy consumption and area-delay product, promising
advancements for next-generation of training-on-edge comput-
ing systems like HDC. Our proposed framework, leveraging
deterministic Sobol sequences, frees us from dependence on
random source generators such as LFSRs in training. It also
reduces the optimization into a single step due to high-quality
deterministic behavior. This framework enables us to maintain
identical hardware steps for both training and inference (➀ -
with memory read-, ➁, ➂, ➃, and ➄). In the conventional
approach for the pseudo-random case, hypervectors are gener-
ated during training, and based on orthogonality performance,
the hypervectors are saved for inference. While this remains an
option for Sobol-based designs, thanks to their deterministic
nature, it does not necessarily have “class counts × D size-
bit memory.” Instead, we save optimal Sobol sequences with
16-bit precision and can retain comparator-based dynamic
hypervector generation even in inference, albeit with a trade-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 8

TABLE V
CLASSIFICATION RATES FOR DIFFERENT ENCODING METHODS

D
Encoding
Methods

Min.
Acc.

Max.
Acc.

Std.
Dev.

Avg.
Acc.

16

Random Vector 13.19% 18.14% 0.0108 15.07%
LFSR w/ Random Seed 12.45% 18.20% 0.0119 15.17%

Sobol LD Sequence - 17.80%
Sobol IDXs (T=0.66): 2, 3, 8, 11, 13, 14, 16, 18, 27, 28, 29, 34,
35, 40, 42, 44, 46, 47, 50, 52, 53, 54, 55, 60, 61, 62, 63, 66

32

Random Vector 20.47% 25.70% 0.0121 22.71%
LFSR w/ Random Seed 18.69% 25.70% 0.0121 22.47%

Sobol LD Sequence - 26.52%
Sobol IDXs (T=0.30): 2, 4, 7, 8, 12, 20, 25, 27, 30, 29, 36, 40,
42, 39, 43, 58, 51, 52, 64, 66, 74, 46, 79, 69, 72, 80, 65, 88

64

Random Vector 31.07% 39.52% 0.0151 35.43%
LFSR w/ Random Seed 31.78% 37.10% 0.0124 34.57%

Sobol LD Sequence - 46.22%
Sobol IDXs (T=0.70): 3, 6, 14, 16, 18, 19, 25, 26, 28, 30, 31, 35,
36, 41, 54, 49, 73, 61, 67, 64, 72, 90, 91, 86, 88, 96, 100, 101

12
8

Random Vector 48.63% 54.80% 0.0127 52.04%
LFSR w/ Random Seed 48.02% 54.02% 0.0112 51.16%

Sobol LD Sequence - 60.74%
Sobol IDXs (T=0.74): 2, 4, 5, 7, 14, 11, 13, 16, 23, 24, 26,
25, 32, 34, 36, 42, 39, 53, 50, 48, 61, 67, 70, 64, 66, 72, 78, 84

25
6

Random Vector 67.36% 71.70% 0.0103 69.24%
LFSR w/ Random Seed 66.80% 71.67% 0.0105 68.61%

Sobol LD Sequence - 79.03%
Sobol IDXs (T=0.70): 2, 3, 16, 10, 25, 28, 19, 38, 32, 60, 45,
49, 39, 53, 54, 68, 80, 82, 64, 90, 78, 95, 99, 112, 120, 108, 92, 118

51
2

Random Vector 82.32% 83.83% 0.0039 83.03%
LFSR w/ Random Seed 81.31% 83.18% 0.0045 82.22%

Sobol LD Sequence - 89.47%
Sobol IDXs (T=0.70): 2, 8, 9, 13, 16, 19, 21, 28, 29, 48, 32,
44, 38, 64, 50, 51, 54, 58, 61, 85, 73, 74, 97, 101, 112, 90, 117, 120

10
24

Random Vector 90.27% 91.51% 0.0025 91.15%
LFSR w/ Random Seed 90.01% 91.22% 0.0028 90.56%

Sobol LD Sequence - 93.78%
Sobol IDXs (T=0.70): 1, 4, 9, 14, 26, 22, 21, 31, 51, 30, 34, 36,
61, 71, 67, 73, 97, 99, 100, 96, 107, 125, 108, 110, 152, 120, 150, 140

20
48

Random Vector 94.73% 95.40% 0.0015 95.14%
LFSR w/ Random Seed 94.21% 95.04% 0.0017 94.71%

Sobol LD Sequence - 96.31%
Sobol IDXs (T=0.34): 6, 5, 9, 14, 22, 16, 47, 51, 55, 64, 58, 68, 78,
87, 105, 88, 97, 96, 100, 166, 129, 132, 145, 152, 153, 114, 179, 164

40
96

Random Vector 96.68% 97.09% 9.20e-04 96.88%
LFSR w/ Random Seed 96.44% 96.88% 0.0012 96.68%

Sobol LD Sequence - 97.05%
Sobol IDXs (T=0.34): 1, 4, 6, 16, 30, 21, 26, 48, 33, 55, 43, 78,
60, 62, 82, 96, 97, 87, 88, 91, 92, 126, 100, 105, 109, 115, 121, 127

81
92

Random Vector 97.47% 97.87% 8.78e-04 97.68%
LFSR w/ Random Seed 97.36% 97.73% 9.19e-04 97.55%
Multiple LFSRs - 97.31%

Sobol LD Sequence - 97.85%
Sobol IDXs (T=0.38): 2, 5, 12, 15, 23, 36, 48, 51, 53, 54, 63, 73, 66,
79, 97, 115, 88, 98, 104, 109, 159, 148, 147, 123, 126, 130, 188, 172

off in generation and memory cost, like in training. Table IV
reports the cost of training a single data sample in ASIC
design for the Sobol case. The reported results can also pertain
to dynamically generated vectors in inference. Alternatively,
we can read pre-generated binary vectors for P and L from
memory to reduce the generation costs in inference. In this
scenario, the area-delay product is found 18.32×10−12s×m2

and 44.16×10−12s ×m2 for the letter and image processing
applications, respectively. This binary vector reading approach
is the same for both pseudo-random and Sobol case for the
inference phase, while the Sobol-based design outperforms
the pseudo-random case in the training phase as reported in
Table IV.

B. Accuracy
For accuracy evaluation, we used two different datasets for

separate performance monitoring: the 21-class European lan-
guages dataset [43], the newspaper headlines [44] dataset, and
the medMNIST dataset [42]. Following the testing approach
of [6] and [41], first, the Europarl Parallel Corpus dataset [45]
was used for the inference step. The selected n-gram was
four for better accuracy, as reported in [6]. First, the training
dataset was pre-analyzed over a 1000-element validation set
with the MATLAB tool’s first 28 Sobol sequences. Hence,
K=28 (26 letters, one space, and one extra character). Fig. 12
presents the pre-analysis for T . The T values on the x-axis
range from 0 to 1 with 0.02 steps. The hypervector size D
varies from 16 to 8192. The preliminary analysis for each D

size helps us determine the approximate T range that gives the
maximum accuracy with the Sobol sequences. We observed
that, whether the first K Sobol sequences are used, or the K
Sobol sequences are randomly selected, the relative analysis of
the T values shows similar distributions, and the peak accuracy
is obtained around T=0.34 (±0.04) or T=0.7 (±0.04). The
selected T s are used in Algorithm 1 with the best uncorrelated
Sobol sequences obtained by Algorithms 2 and 3.

After determining the best T for each D, tests are performed
with different encoding methods (Sobol, LFSR, and random).
Table V presents the results. For the LFSR-based encoding,
we evaluated all maximal-period LFSRs corresponding to each
D [40]. For the random encoding, we run 1000 trials, each
generating a different set of random numbers. We report the
minimum, maximum, and average accuracy for the LFSR
and random encoding. As it can be seen, the Sobol-based
encoding achieves superior performance in all cases. The case
with D=8192 delivers the best accuracy (97.85%), close to
the baseline accuracy from a conventional machine learning
approach [6]. The second-best outcomes are obtained with the
hypervectors produced with the MATLAB random function,
and then the hardware-friendly LFSR-based encoding provides
the lowest accuracy. Table V reports the best Sobol IDXs
selected with the proposed algorithms.

To show the superiority of the proposed encoding with
another dataset, we also tested the classification problem of
newspaper headlines on three topics (entertainment, politics,
and parenting) obtained from the HuffPost newspaper head-
lines released in Kaggle [44]. This is a relatively more complex
problem with shorter headlines compared to paragraphs. For
training, 3400 headlines were utilized for each class, while
1000 different headlines were used for inference. Fig. 13
shows the pre-analysis of T for this dataset for D=4096 and
8192. As can be seen, a similar distribution is obtained by
finding the best accuracy around T=0.34 (±0.04). For n-
gram=5 and D=8192, the random function-based approach
showed an accuracy of 69.81% (average of 1000 trials), while
the proposed Sobol-based method achieved an accuracy of
70.97%.

A key observation considering the results presented in Ta-
ble V and Figs. 12 and 13 is that utilizing Sobol sequences can
achieve shorter hypervectors but with similar accuracy as their
conventional pseudo-random counterparts. Consequently, iso-
accuracy results can be produced with Sobol sequences with
shorter delays, thereby achieving a more favorable area-delay
product. These findings underscore the significance of the
optimized Sobol-based architecture. The design is enhanced
through optimization algorithms that leverage meticulously
chosen, best orthogonal Sobol random sources. It should be
emphasized that HDC systems generally adhere to a single-
pass learning strategy, presenting results based on scanning
the dataset only once without a backward pass. On the other
hand, to establish edge-compatible training, the raw dataset
has been presented without the use of any additional feature
extraction or multiple iterations based on learning rate or
error optimization. Conventional neural network systems with
complex matrix multiplications pose bottlenecks for edge
devices during error optimization with many partial derivative
calculations, learning rate-based fine-tuning, and batch pro-
cessing in multi-stochastic data processing. In contrast, HDC
systems offer a lightweight solution for the same accuracy
level. A neural network-based system established for similar
accuracy is more costly and less efficient in hardware. The pro-
posed vector generation technique opens a new perspective for
hardware-friendly learning. It is lightweight, highly accurate,
and requires only one round of hypervector generation. In prior
HDC systems, selecting the best vectors involved multiple
iterations with a random source to achieve good orthogonality
[46]. In contrast, LD Sobol sequences inherently provide the
needed orthogonality; with our optimization approach, higher
quality is guaranteed for hypervector generation.

Following the n-gram-based HDC approach, we conducted
experiments utilizing record-based encoding. In this set of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 9

Fig. 12. Preliminary analysis of T for different hypervector sizes (D) with the first 28 Sobol sequences of MATLAB (: maximum accuracy point).

Random Sobol

69.81% 70.97%

P
re-an

alysis
Tests

D=8192

P
re-an

alysis

Random Sobol

67.23% 68.80%

Tests
D=4096

T=0.38 T=0.38

n-gram=5 n-gram=5

+1.57 +1.16

Fig. 13. Preliminary analysis of T and tests for the headline dataset.

experiments, we also target measuring the learning rate-
based training epochs for validations. We focus on two dis-
tinct sub-datasets for an image processing application using
the medMNIST dataset: BloodMNIST and DermaMNIST.
Our initial investigation involved validating our framework
by employing optimized Sobol sequences for the record-
based encoding of image pixel positions. Throughout this
experiment, our primary objective was to monitor various
learning metrics, particularly during training, given our pro-
posal’s alignment with a lightweight training system that
involves less complexity and fewer iterations compared to
the pseudo-random approach. We assessed the performance
using a range of metrics based on confusion matrices, includ-
ing Sensitivity (TP

(TP+FN)), Precision (TP
TP+FP), Specificity

(TN
(FP+TN)), F1-measure (2×TP

2×TP+FP+FN), Balanced Accu-
racy (Sensit.+Specif.

2), and the Fowlkes–Mallows index (FMI:√
(Precision× Sensitivity)), in addition to standard ac-

curacy (TP+TN
TP+TN+FP+FN , where TP : True Positives, TN :

True Negatives, FP : False Positives, and FN : False Neg-
atives). Both the pseudo-random (with LFSR) and Sobol-
based approaches were evaluated in the experiments, and
the validation accuracy, along with corresponding plots, was
presented. The epoch-based learning is applied by adopting
the learning rate (η)-based model update for incremental
learning. The model undergoes validation accuracy evaluation
during each training sample’s process, considering the impact
of the final contributing training sample hypervector (h). If
validation improves based on the recent contribution to the
class hypervector (C), then the training sample’s effect on
the learning model is incorporated, contributing to the class
hypervector via accumulation (step ➃ in Fig. 2). The formula

for updating the class hypervector in the event of validation
accuracy improvement is Cnew = Cold + (η × h) (otherwise,
Cnew = Cold−(η×h) [47]). Our experiments achieved optimal
results around η=0.1.

We separately tested two subsets of the medMNIST dataset:
BloodMNIST, containing 17,092 images with 8 classes, and
DermaMNIST, containing 10,015 images with 7 classes.
Fig. 14 depicts the performance of the record-based HDC
framework using pseudo-random and Sobol-based position
encodings. We conducted 10 independent runs for the pseudo-
random case (Fig. 14(a) for BloodMNIST and Fig. 14(c) for
DermaMNIST) and reported the best possible learning plot and
testing accuracy. The learning plots for epoch-based process-
ing revealed the rapid convergence of validation accuracy in
the Sobol case (Fig.s 14(b) and (d)). Moreover, the reported
confusion matrices highlighted the superior performance of
our proposed approach compared to conventional HDC learn-
ing methods. In the BloodMNIST dataset, while the accuracy
for the pseudo-random case reached up to 83.96%, the Sobol-
based approach exhibited improved performance, achieving an
accuracy of 87.51%. In DermaMNIST, pseudo-random- and
Sobol-based test accuracy is 67.66% and 70.34%, respectively;
the DermaMNIST dataset is relatively challenging. These
results highlight a notable trend: the Sobol-based approach
exhibits higher validation accuracy in the initial epochs. For
instance, by the tenth epoch, BloodMNIST achieves 90%
validation accuracy with the Sobol approach, compared to
around 80% with the pseudo-random approach. In essence, this
observation may inspire future investigations into the training
dynamics of HDC systems based on quasi-random sequences.

C. Iso-Accuracy (IA) Hardware Cost Analysis
Extending our examination of the hardware and accuracy

results, we provide a deeper analysis of hardware performance
for similar accuracy levels (“iso-accuracy”) between the con-
ventional random approach and the proposed optimization-
based method. We find the accuracy of the random approach
for the language classification task (recalling Table V) when
setting D to 256, 512, 1024, 2048, and 4096. Subsequently,
using optimized hypervectors based on the Sobol sequences
in our method, we adjust the values of D to achieve a
similar accuracy. For example, the random approach yields
a classification accuracy of 68.6% with D = 256, while
our method achieves a similar accuracy with D = 185.
This provides a significant hardware cost advantage with our
method. We assess various D sizes across different hardware

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 10

Data
Samples

Data
Samples

Pseudo-
random

Sobol

Data
Samples

Data
Samples

Pseudo-
random

Sobol

(a)

(b)

(c)

(d)

DermaMNISTBloodMNIST

Fig. 14. Performance monitoring of medMNIST dataset with conventional pseudo-random LFSR and Sobol-based encoding approach. BloodMNIST dataset
performance with (a) pseudo-random LFSR and (b) quasi-random Sobol sequences. DermaMNIST dataset performance with (c) pseudo-random LFSR and
(d) quasi-random Sobol sequences.

68.6%IA 82.2% 90.5% 94.7% 96.6%

D

34 17

Random

Sobol

EMBEDDED

R
u
n
t
i
m
e

(
s
e
c
)

68
31

134
70

267

155

534

320

(a) 68.6%IA 82.2% 90.5% 94.7% 96.6%

D

0.60.4

Random

Sobol

EMBEDDED

M
e
m
o
r
y

(
K
B
)

1.10.9

2.32.0

4.6
3.8

9.2

7.7

(b)

68.6%IA 82.2% 90.5% 94.7% 96.6%

D

2
4
e
-
3

2
.
3
e
-
3

Random

Sobol

GPU

A
v
e
r
a
g
e

P
o
w
e
r

(
m
W
)

(d) 68.6%IA 82.2% 90.5% 94.7% 96.6%

D

1
.
7
3
e
-
9

Random

Sobol

ASIC

(e)

68.6%IA 82.2% 90.5% 94.7% 96.6%

D

3.2
2.8

Random

Sobol

CPU

A
v
e
r
a
g
e

W
o
r
k
l
o
a
d

(
%
)

(c)

68.6%IA 82.2% 90.5% 94.7% 96.6%

D

Random

Sobol

ASIC

(f)

3.22.9
3.3

2.9

4.7
4.1

7.4
7.0

3
3
e
-
3

2
.
8
e
-
3 5
1
e
-
3

4
.
4
e
-
3

8
.
5
e
-
3

9
2
e
-
3

1
7
e
-
3

1
6
3
e
-
3

2
.
1
7
e
-
9

0
.
1
8
e
-
1
2

3
.
2
1
e
-
9

0
.
2
9
e
-
1
2

0
.
5
6
e
-
1
2

0
.
8
9
e
-
1
2

1
.
4
2
e
-
1
25
.
4
6
e
-
9

9.73e-9

E
n
e
r
g
y

(
J
o
u
l
e
)

A
r
e
a
×
D
e
l
a
y

(
s
×
m
2
)

2
2
.
9
e
-
9

1
.
8
9
e
-
1
2

3
.
9
9
e
-
1
2

4
6
.
1
e
-
9

Area(%)

14%

46%

22%

18%

7
.
5
6
e
-
1
2

9
2
.
2
e
-
9

Encoding
Shift & Rot.
and XORing

Accumul.

Binariz.

194.3e-9

1
5
.
2
e
-
1
2

D=8K

2
6
.
1
e
-
1
2

397.4e-9

Fig. 15. Iso-Accuracy (IA) hardware cost analysis for parametric D values, (a) Embedded platform runtime, (b) Embedded platform memory, (c) CPU average
workload, (d) GPU power, (e) ASIC energy, and (f) ASIC area×delay including the HDC sub-module area distribution given in a pie chart.

environments (i.e., an embedded system, a CPU, a GPU, and
an ASIC design) to illustrate the trade-offs between accuracy
and hardware resources. We also break down the hardware cost
results into smaller components for the ASIC implementation.
Fig. 15 depicts the results. As it can be seen, our proposed
approach consistently exhibits better performance in terms of
latency, power, energy, and memory consumption compared
to the random approach. In particular, we report runtime and
memory usage for an embedded platform (Fig. 15(a) and
(b)), average CPU load (Fig. 15(c)), average GPU power
consumption (Fig. 15(d)), and energy and area×delay for the
ASIC design (Fig. 15(e) and (f)). We note that as the vector
size or D increases, both the accuracy and the hardware cost
increase. Finally, Fig. 15(f) illustrates a pie chart detailing
the specific area consumption of each sub-module within our
HDC system (for D = 8192 and n=3-gram), highlighting
critical areas for potential optimization for further hardware

cost reduction in future studies.

V. POTENTIAL IMPACT AND FUTURE WORKS

This study presents the first endeavor to optimize and
select the best Low Discrepancy (LD) sequences for encoding
hypervectors with maximum orthogonality for HDC systems.
We expect this initiative forges new paths for future research
on deterministic HDC systems, diverging from the reliance
on stochastic pseudo-random encoding that necessitates con-
tinuous, time-consuming optimizations during the learning
phase. Benchmarking HDC performance across different LD
sources holds promise for stimulating new research avenues
for improving the performance of HDC systems.

Recent literature has shown increasing interest in HDC
system design for online training. Addressing the limitations
associated with on-the-go selection of the best-performing
random sequences, this study proposes a novel methodology

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 11

TABLE VI
METHODOLOGY CONTRAST: PROPOSED VS. RELATED WORKS

Features Proposed Methodology Literature

Sequence Generation

Quasi-random Sobol
sequences with offline

optimization for selecting
the best sequence

indexes for orthogonality

Pseudo-random
sequences with

relatively limited
orthogonality

properties

Training Algorithm
Sobol sequences with

offline optimization for
selecting the best sequence
indexes for orthogonality

Pseudo-random
sequences requiring

multiple online
runs of the learning

algorithm for
optimal performance

Adaptability
Pre-determined and valid for
all future usage; no need for
online training adjustments

Requirement
for dynamic

adaptation for
optimal application

performance

Distribution Patterns

Interesting, repeated pattern
in the distribution of a

sequence; easy inference
of future distributions

from early indexes

No estimable
distribution, thus
no assistance in
inferring further

sequence distributions
from early indexes

Orthogonality
for Training

Achieves satisfactory
orthogonality for

training learning systems
through memory-saving

Requires additional
circuitry for

improved accuracy
due to multiple
iterations and

dynamic nature

Accuracy and
Learning Dynamics

Offers better accuracy
and learning dynamics,

including early epoch learning

Relatively lower
accuracy and slower
learning dynamics

Random Source
for LD Sequence
Index Selection

Utilizes stochastic computing-
based random source for LD

sequence index selection

Sequential usage
of LD sequences

(like in SC science)

for improved HDC system design by utilizing predefined
deterministic sequences. Minimizing reruns during training
can significantly alleviate the overall system load.

This study further creates new research avenues for applying
HDC to larger learning tasks. One case is semantic analysis
of linguistic data, like the headline dataset in this work.
Addressing the challenges in raw symbol processing for HDC-
based semantic classification, our proposed improvements hold
promise for achieving high accuracy for tasks like large-scale
language processing for semantics purposes. Our approach
eliminates the need for application-specific online training
optimizations, preserving on-the-go processing efficiency with
a simple reading of pre-determined values from memory.
While this study recommends quasi-randomness for higher
accuracy, pseudo-random sequences (such as those generated
using LFSRs) can also be explored to enhance the performance
of prior work. Previous comparisons between Sobol- and
LFSR-based encoding methods in the SC literature proved
Sobol’s superiority [16]. However, optimizing LFSRs for on-
the-go hypervector generation may offer an intriguing al-
ternative, albeit with potential accuracy trade-offs. Another
future research direction of this work is to study scalability.
The increase in the number of symbols to encode (e.g., in
larger-scale image processing using more pixels) highlights
the importance of vector orthogonality optimizations. Our
proposed approach can find the best orthogonal symbol vectors
for any space and K (symbol counts) size. In future work, we
look into other types of quasi-random sequences, such as Van
der Corput, Niederreiter, Halton, etc., the sequences already
well acclaimed in SC [48], to increase the workspace for large-
scale HDC applications with many symbols.

In addition to these impacts, this study bridges two emerging
computing paradigms: HDC and Stochastic Computing (SC).
Both HDC and SC enjoy holographic data representations.
Improving the orthogonality for HDC and optimizing quasi-
random sources can contribute to the accuracy of SC encoding.
While SC traditionally employs two-input logic gates for
arithmetic operations, exploring symbol-based representations
can present novel opportunities for advancing this field.

Overall, this work provides a new path for HDC researchers
to leverage quasi-randomness for ideal orthogonality in HDC
systems. Exploring the encoding steps like binding and
bundling for SC and hardware optimizations for better pseudo-
random generators also present promising future directions.
Large-scale HDC systems, especially for challenging language
processing tasks, can significantly benefit from the proposed

methodology by achieving higher accuracy and reducing vec-
tor size. In summary, Table VI outlines the key features of this
work compared to the prevailing trends in the literature.

VI. CONCLUSION

In this work, we introduced a novel, lightweight approach
featuring an innovative encoding technique for generating
high-quality hypervectors for hyperdimensional computing
(HDC) systems. Inspired by recent strides in low-discrepancy
encoding methods proposed for stochastic computing (SC)
systems, we employed quasi-random Sobol sequences, coupled
with an optimization framework, to produce orthogonal hyper-
vectors with varied distributions and ratios of +1s and -1s. Our
methodology exploits an optimization algorithm to identify
the optimal set of Sobol sequences, minimizing correlations
crucial for vector symbolic data processing. To substantiate
the effectiveness of the proposed technique, we conducted a
comprehensive performance evaluation, comparing the method
with two conventional approaches for hypervector generation
based on LFSRs and algorithmic random functions. We eval-
uated the proposed approach for letter and image processing
HDC systems, scrutinizing accuracy and integrating hardware
designs across four distinct processing environments: ARM
embedded device, CPU, GPU, and custom ASIC design. Our
novel encoding technique demonstrated superior classification
accuracy across varied datasets. It also showed higher hard-
ware efficiency, considering factors such as energy efficiency
and area-delay product.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation (NSF) Grants 2339701 and 2019511, and generous
gifts from Cisco and NVIDIA.

APPENDIX
FORMAL DEFINITION OF SOBOL SEQUENCES

The MATLAB built-in Sobol sequence generator [38] can
be used to efficiently generate Sobol arrays. The procedure
for generating Sobol numbers is as follows: According to Joe
and Kuo [39], any jth component of the points in a Sobol
sequence is generated by first defining a primitive polynomial
xsj +a1,jx

sj−1+...+asj−1,jx+1 of a degree of sj in the field
Z2. Any ‘a’ satisfies a ∈ {0, 1}. By considering bit-by-bit XOR
operator, ⊕, the ‘a’ coefficients are utilized for a sequence
{m1,j ,m2,j , ...} by a relation given as mk,j = 2a1,jmk−1,j⊕
22a2,jmk−2,j ⊕ ...⊕ 2sj−1asj−1,jmk−sj+1,j ⊕ 2sjmk−sj ,j ⊕
mk−sj ,j . The m values can be arbitrarily chosen provided
that 1 ≤ k ≤ sj , and mj,k ∈ {2n+ 1 : n ∈ Z+

0 } and mj,k <
2k. With a denote of direction numbers, {v1,j , v2,j , ...}, where
any vj,k =

mk,j

2k
, jth component of the ith point in a Sobol

sequence is presented: xi,j = b1v1,j ⊕ b2v2,j ⊕ ..., where any
b is the right-most bits (i.e., least-significant ones) of the i
sub-index in binary form.

REFERENCES

[1] S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani, “Learning
from hypervectors: A survey on hypervector encoding,” arXiv preprint
arXiv:2308.00685, 2023.

[2] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[3] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and
T. Rosing, “A framework for collaborative learning in secure high-
dimensional space,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), 2019, pp. 435–446.

[4] A. Hernández-Cano, C. Zhuo, X. Yin, and M. Imani, “Real-time
and robust hyperdimensional classification,” in Proceedings of the 2021
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 397–402.
[Online]. Available: https://doi.org/10.1145/3453688.3461749

[5] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,” Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3453688.3461749

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 12

[6] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,” in
2016 International Symposium on Low Power Electronics and Design
(ISLPED), 2016, p. 64–69.

[7] D. Ma, R. Thapa, and X. Jiao, “Molehd: Efficient drug discovery using
brain inspired hyperdimensional computing,” in 2022 IEEE International
Conference on Bioinformatics and Biomedicine, 2022, pp. 390–393.

[8] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hyper-
vectors, binarized bundling, and combinational associative memory,” J.
Emerg. Technol. Comput. Syst., vol. 15, no. 4, oct 2019.

[9] F. R. Najafabadi, A. Rahimi, P. Kanerva, J. Han, and J. Rabaey, “Hy-
perdimensional computing for text classification,” in Design Automation
Test in Europe.

[10] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and
T. Rosing, “Searchd: A memory-centric hyperdimensional computing
with stochastic training,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2422–2433, 2020.

[11] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, may 2013. [Online].
Available: https://doi.org/10.1145/2465787.2465794

[12] S. Aygun, M. H. Najafi, M. Imani, and E. O. Gunes, “Agile simulation of
stochastic computing image processing with contingency tables,” IEEE
TCAD, pp. 1–1, 2023.

[13] A. Alaghi and J. Hayes, “Fast and accurate computation using stochastic
circuits,” in DATE’14, March 2014, pp. 1–4.

[14] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel sobol sequences,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 7, 2018.

[15] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences,” in 2017 Design Automation and Test in Europe, 2017, pp.
650–653.

[16] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods
for stochastic computing using low-discrepancy sequences,” in 2018
ICCAD, 2018, p. 1–8.

[17] S. Aygun, M. H. Najafi, and M. Imani, “A linear-time, optimization-free,
and edge device-compatible hypervector encoding,” in 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2023,
pp. 1–2.

[18] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in ICCD, Asheville, NC, USA, 2013, pp. 39–46.

[19] G. Karunaratne, A. Rahimi, M. L. Gallo, G. Cherubini, and A. Sebastian,
“Real-time language recognition using hyperdimensional computing on
phase-change memory array,” in IEEE AICAS, 2021.

[20] D. Kleyko, E. Osipov, and R. W. Gayler, “Recognizing permuted words
with vector symbolic architectures: a cambridge test for machines,”
Procedia Computer Science, 7th Annual International Conference on
Biologically Inspired Cognitive Architectures, vol. 88, 2016.

[21] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, and M. Imani, “Stochd:
Stochastic hyperdimensional system for efficient and robust learning
from raw data,” in 2021 Design Automation Conference, 2021, pp. 1195–
1200.

[22] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for
combined learning and classification of exg signals,” Proceedings of the
IEEE, vol. 107, no. 1, pp. 123–143, 2019.

[23] L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circ. and Syst. Mag., vol. 20, no. 2, pp. 30–47,
2020.

[24] Y. Yao, W. Liu, G. Zhang, W. Hu, and W. Xiong, “Fast sar image
recognition via hyperdimensional computing using monogenic map-
ping,” IEEE Geo. and Rem. Sens. Let., vol. 19, pp. 1–5, 2022.

[25] H. Chen and M. Imani, “Density-aware parallel hyperdimensional
genome sequence matching,” in 2022 IEEE 30th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2022, pp. 1–4.

[26] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 8, 2018.

[27] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary
learning framework for hyperdimensional computing,” in 2019 Design
Automation and Test in Europe, 2019, pp. 126–131.

[28] P. Schober, M. H. Najafi, and N. TaheriNejad, “High-accuracy multiply-
accumulate (mac) technique for unary stochastic computing,” IEEE
Trans. on Comp., vol. 71, no. 6, 2022.

[29] P. Poduval, Z. Zou, X. Yin, E. Sadredini, and M. Imani, “Cognitive
correlative encoding for genome sequence matching in hyperdimen-
sional system,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 781–786.

[30] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, J. Kang, Y. Kim, and
T. v. Rosing, “Cosmo: Computing with stochastic numbers in memory,”
J. Emerg. Technol. Comput. Syst., vol. 18, no. 2, 2022.

[31] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, 2019.

[32] C. Dutang and D. Wuertz, “A note on random number generation,” 06
2011.

[33] I. Sobol’, “On the distribution of points in a cube and the approximate
evaluation of integrals,” USSR Comp. Math. and Math. Phys., vol. 7,
no. 4, 1967. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0041555367901449

[34] J. Halton, “On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals.” Numerische
Mathematik, vol. 2, pp. 84–90, 1960. [Online]. Available: http:
//eudml.org/doc/131448

[35] sobolset, “Sobol quasirandom point set - MATLAB — mathworks.com,”
https://www.mathworks.com/help/stats/sobolset.html, 2024, [Accessed
27-March-2024].

[36] S. v1.13.0 Manual, 2024, [Accessed 27-March-2024]. [On-
line]. Available: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.qmc.Sobol.html

[37] S. Aygun and E. O. Gunes, “Utilization of contingency tables in
stochastic computing,” IEEE Trans. on Circ. and Syst. II: Expr. Br.,
vol. 69, no. 6, 2022.

[38] “MATLAB Sobolset,” https://www.mathworks.com/help/stats/sobolset.
html#brx24a7-6.

[39] S. Joe and F. Y. Kuo, “Remark on algorithm 659: Implementing sobol’s
quasirandom sequence generator,” ACM Trans. Math. Softw., vol. 29,
no. 1, 2003.

[40] P. Koopman. Maximal length lfsr feedback terms. [Online]. Available:
https://users.ece.cmu.edu/∼koopman/lfsr/

[41] A. Rahimi, “Github,” https://github.com/abbas-rahimi/
HDC-Language-Recognition, 2016.

[42] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni,
“Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d
biomedical image classification,” Scientific Data, vol. 10, no. 1, p. 41,
Jan 2023.

[43] U. Quasthoff, M. Richter, and C. Biemann, “Corpus portal for search in
monolingual corpora,” in LREC, 2006.

[44] R. Misra, “News category dataset, kaggle,” https://www.kaggle.com/
datasets/rmisra/news-category-dataset, 2018.

[45] P. Koehn, “Europarl,” http://www.statmt.org/europarl/, 2005.
[46] H. Lee, J. Kim, H. Chen, A. Zeira, N. Srinivasa, M. Imani, and Y. Kim,

“Comprehensive integration of hyperdimensional computing with deep
learning towards neuro-symbolic ai,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), 2023, pp. 1–6.

[47] Y. Nam, M. Zhou, S. Gupta, G. De Micheli, R. Cammarota, C. Wilker-
son, D. Micciancio, and T. Rosing, “Efficient machine learning on en-
crypted data using hyperdimensional computing,” in 2023 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
2023, pp. 1–6.

[48] M. Shoushtari Moghadam, S. Aygun, M. R. Alam, and M. H.
Najafi, “P2LSG: Powers-of-2 low-discrepancy sequence generator for
stochastic computing,” in Proceedings of the 29th Asia and South Pacific
Design Automation Conference, ser. ASPDAC ’24. IEEE Press, 2024,
p. 38–45. [Online]. Available: https://doi.org/10.1109/ASP-DAC58780.
2024.10473928

Sercan Aygun (S’09-M’22) received a B.Sc. degree
in Electrical & Electronics Engineering and a dou-
ble major in Computer Engineering from Eskisehir
Osmangazi University, Turkey, in 2013. He com-
pleted his M.Sc. degree in Electronics Engineering
from Istanbul Technical University in 2015 and
a second M.Sc. degree in Computer Engineering
from Anadolu University in 2016. Dr. Aygun re-
ceived his Ph.D. in Electronics Engineering from
Istanbul Technical University in 2022. Dr. Aygun
received the Best Scientific Research Award of
the ACM SIGBED Student Research Competition
(SRC) ESWEEK 2022, the Best Paper Award at

GLSVLSI’23, and the Best Poster Award at GLSVLSI’24. Dr. Aygun’s
Ph.D. work was recognized with the Best Scientific Application Ph.D. Award
by the Turkish Electronic Manufacturers Association. He is currently an
Assistant Professor at the School of Computing and Informatics, University
of Louisiana, LA, USA. He works on emerging computing technologies,
including stochastic and hyperdimensional computing in computer vision and
machine learning.

M. Hassan Najafi (S’15-M’18-SM’23) received
the B.Sc. degree in Computer Engineering from
the University of Isfahan, Iran, the M.Sc. degree
in Computer Architecture from the University of
Tehran, Iran, and the Ph.D. degree in Electrical
Engineering from the University of Minnesota, Twin
Cities, USA, in 2011, 2014, and 2018, respectively.
He is currently an Assistant Professor with the ECSE
Department of Case Western Reserve University
(CWRU). Before that, he was an Assistant Profes-
sor at the School of Computing and Informatics
at the University of Louisiana at Lafayette. His
research interests include stochastic and approximate

computing, unary processing, in-memory computing, and hyperdimensional
computing. He has authored/co-authored more than 75 peer-reviewed papers
and has been granted 5 U.S. patents with more pending. In recognition
of his research, he received the NSF CAREER Award in 2024, the 2018
EDAA Outstanding Dissertation Award, the Doctoral Dissertation Fellowship
from the University of Minnesota, the Best Paper Award at ICCD’17 and
GLSVLSI’23, and the Best Poster Award at GLSVLSI’24. Dr. Najafi has
been an editor for the IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, and a reviewer for many journals and conferences.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3463544

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 05,2024 at 20:42:29 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/2465787.2465794
https://www.sciencedirect.com/science/article/pii/0041555367901449
https://www.sciencedirect.com/science/article/pii/0041555367901449
http://eudml.org/doc/131448
http://eudml.org/doc/131448
https://www.mathworks.com/help/stats/sobolset.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.qmc.Sobol.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.qmc.Sobol.html
https://www.mathworks.com/help/stats/sobolset.html#brx24a7-6
https://www.mathworks.com/help/stats/sobolset.html#brx24a7-6
https://users.ece.cmu.edu/~koopman/lfsr/
https://github.com/abbas-rahimi/HDC-Language-Recognition
https://github.com/abbas-rahimi/HDC-Language-Recognition
https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.kaggle.com/datasets/rmisra/news-category-dataset
http://www.statmt.org/europarl/
https://doi.org/10.1109/ASP-DAC58780.2024.10473928
https://doi.org/10.1109/ASP-DAC58780.2024.10473928

	Introduction
	Background
	Hyperdimensional Computing (HDC)
	Stochastic Computing (SC)
	From Pseudo-randomness to LD: Sobol Sequences

	Proposed Methodology
	From Bit-Streams to Hypervectors
	On the Decision of the Best-Performing Sobol Sequences
	The Overall Architecture
	n-gram-based HDC Framework
	Record-based HDC Framework

	Tests and Results
	Hardware Performance
	Accuracy
	Iso-Accuracy (IA) Hardware Cost Analysis

	Potential Impact and Future Works
	Conclusion
	Appendix: Formal Definition of Sobol Sequences
	References
	Biographies
	Sercan Aygun
	M. Hassan Najafi

