
All You Need is Unary: End-to-End Bit-Stream Processing in
Hyperdimensional Computing

Mehran Shoushtari Moghadam❉, Sercan Aygun❉, Faeze S. Banitaba, and M. Hassan Najafi
School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA, USA

{m.moghadam, sercan.aygun, faeze.banitaba, najafi}@louisiana.edu
(❉: Both authors contributed equally to this research.)

ABSTRACT
Hyperdimensional Computing (HDC) is a brain-inspired computing
paradigm introduced to achieve energy efficiencywith a lightweight
and single-pass training model. Hypervectors (HVs) at the heart of
the HDC systems play a fundamental role in elevating the accuracy
and obtaining the desired performance. Image-based HV encoding
requires two types of HVs: Position and Level HVs. State-of-the-art
approaches utilize pseudo-random methods for generating these
HVs, which might degrade system performance and cause higher
power consumption due to poor randomness in HV generation.
These conventional methods require iteratively calculating orthog-
onal Positional HVs for acceptable accuracy. This work proposes a
fast, ultra-lightweight, and high-quality HV generator incorporat-
ing low-discrepancy random sequences and the emerging unary
bit-stream processing. For the first time, we employ unary com-
puting (UC) to generate Level HVs, demonstrating that there is no
need for randomness in HDC systems. We generate Position HVs
using a single-source quasi-random sequence with a recurrence
property. Our proposed HV generation technique improves the
overall HDC accuracy by up to 6.4% for the medical MNIST dataset
while reducing the power consumption of HV generation by 98%.

CCS CONCEPTS
•Hardware→ Emerging technologies; •Mathematics of com-
puting; •Computer systems organization→ Real-time systems;
• Computing methodologies → Cross-validation;

KEYWORDS
Hyperdimensional computing, low-discrepancy sequences, low-
power AI, random number generators, unary computing.

1 INTRODUCTION
Unary computing (UC) [23, 31, 32] has emerged as a compelling
computational paradigm, drawing inspiration fromhuman brain sig-
nals. The paradigm iswell-known for offering streamlined hardware
architectures. In contrast to traditional positional binary encoding,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISLPED’24, August 5–7, 2024, Newport Beach, CA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0688-2/24/08
https://doi.org/10.1145/3665314.3670834

where significance is attributed to bit positions, UC represents data
using cumulative counts distributed throughout a bit-stream with
logic 1, while the remaining positions hold logic 0. This uncon-
ventional presentation of data significantly simplifies arithmetic
operations while providing high robustness to error. Hyperdimen-
sional computing (HDC) is another brain-inspired computational
model representing scalars (and symbols) using long hypervectors
(HVs) reminiscent of bit-streams. For machine learning (ML) tasks
such as classification, HDC encodes input data into long vectors
to capture class information and construct learning models [17].
The encoding process involves various steps, includingHV gener-
ation, shifting, multiplication, and addition of resultingHVs. Each
new data point contributes to theHV of the same class with no
error optimization. The process is single-pass, meaning each input
data is processed only once. While some state-of-the-art (SOTA)
approaches adopt single-pass learning [15], epoch-based processing
is also popular [7, 35].

In the existing literature, only a few studies explored unary bit-
stream processing in classifier systems [4, 10, 22, 26]. This work
employs UC in designing HDC systems to achieve the lightest
possible classifier network. Conventionally, HDC systems employ
correlation-aware bit flipping for data encoding. In this approach,
similar numerical values are encoded with correlation, while dis-
tant values exhibit a larger margin of uncorrelation. Prior methods
introduce randomness in bit changes when transitioning HV bits
from one value to another. In this work, we advocate unary HVs,
free from randomness. Generating unary HVs is straightforward
and cost-efficient, offering a promising alternative to conventional
randomHVs. We further introduce a novel encoding approach uti-
lizing single-source quasi-randomness using low-discrepancy (LD)
sequences [16] to generate Position HVs. Unlike previous meth-
ods that employed a different random sequence for each Positional
HV , our approach uses a simple logic design to produce various
HVs while ensuring the necessary orthogonality for the position
HVs [30]. The key contributions of this work are as follows:
❶ Introducing novel encoding methods for generating Position and
Level HVs.
❷ Presenting a cost-efficient design for generating HVs by ex-
ploiting quasi-random sequences.
❸ Reevaluating feature extraction-free, straightforward data pro-
cessing for HDC by utilizing unary bit-stream processing.
❹ Assessing the Medical MNIST dataset for biomedical applica-
tions of HDC and analyzing various ML metrics derived from the
confusion matrix.

https://doi.org/10.1145/3665314.3670834
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665314.3670834&domain=pdf&date_stamp=2024-09-09

ISLPED’24, August 5–7, 2024, Newport Beach, CA Moghadam, et al.

2 BACKGROUND
HDC is a niche computing paradigm emerging as a promising tool
in electronic design systems for tiny ML applications, especially
for classification tasks. HDC system blocks are built with several
levels of logic gates, such as XOR gates, counters, and shifters [1, 9].
Encoding, identified as the first and most crucial step in HDC sys-
tems [5, 12], is nearly the only stage where input data undergoes
processing. Data processing typically occurs in a single pass in
most HDC models. The encoding process transforms input data
(e.g., scalars/symbols) into a distinct format (i.e., bit vectors), gener-
ating class information corresponding to each data label. An effi-
cient encoding stage plays a pivotal role in enhancing the overall
system performance, improving accuracy, and facilitating energy-
efficient design [5, 9, 14]. In the final stage, a similarity calculation
is necessary to identify similar classes and label the sample [29].

In a high-level classification, HDC systems can be divided into
two categories: ① symbol-only systems and ② numerical-value
systems [9, 11]. If the classification problem contains only symbols,
such as language classification or text processing [3], the symbols
are the only input values to process. For instance, in these cases,
letters or positions are the critical symbol-like inputs converted
to HVs. For inputs such as pixel values in image classification
problems, the HDC system treats the data as numerical values.
Generally, the closer the numerical values, the more similar HVs
are in the HDC model.

This study focuses on a medical image processing system [33],
where pixels and their positions are important for the HDC model.
The encoding process begins by converting these data into suitable
HVs. The resulting HVs are binary, comprising logic 1s and
0s. Ensuring correlation among the generated vectors is crucial,
making the choice of the random source needed for generating
HVs pivotal. Particularly for HVs requiring orthogonality, the
level of randomness holds significant importance. Since symbols
(here, pixel positions) lack numerical information, they must be
equally treated, with an equal probability for both logic 1 and
0within the vector. There should be no inherent similarity between
theHVs corresponding to different symbols. Each symbol must
remain independent to ensure classifiers estimate it unbiasedly.
Hence, for symbol-based problems, the midpoint of a probability
range (0 < 𝑃𝑟 = 1

2 < 1) is chosen for each HV .
The SOTAmethods commonly rely on pseudo-random sequences

for the encoding stage [2, 13, 27, 34]. However, employing quasi-
random sequences for HV generation could revolutionize the par-
adigm. In this study, we explore the use of quasi-random Van der
Corput (VDC) sequences, as the basis forHV generation. In general,
any VDC sequence in an arbitrary base B (VDC-B) could be ob-
tained by simply reversing the digits with respect to the radix point,
which is a value in the [0, 1] interval. For instance, the decimal
value 107 in base 5 is represented by (412)5. The corresponding
VDC-5 value is found by 2 × 5−1 + 1 × 5−2 + 4 × 5−3 = 59

125 . Con-
sidering the high demand for low-cost generation of HVs, we
explore the special case of using powers-of-2 bases for the VDC
sequences (VDC-2𝑛). This is as simple as designing a 𝑙𝑜𝑔2 (𝐷)-bit
counter, where 𝐷 is the HV length. In this case, a simple hard-
wiring scheme can easily generate any VDC-2𝑛 sequence without
adding any extra hardware component [21, 28].

VDC-𝟐𝒏

1

0.5

0

(b)

O
r
t
h
o
g
o
n
a
l
i
t
y

Pseudo-Random

O
r
t
h
o
g
o
n
a
l
i
t
y

1

0.5

0

(a)
Proposed HV Generator

1

0.5

0

O
r
t
h
o
g
o
n
a
l
i
t
y

(c)

Figure 1: Similarity comparison of different HV generation sources.
(a) Pseudo-Random, (b) VDC-2𝑛 , and (c) Proposed HV generator.
The first 10 HVs are selected for each method (𝐷 = 1024).

HVs must have an equal number of logic 1s and 0s. On the
other hand, the performance of HDC models is highly dependent
on the level of orthogonality between HVs; The more orthogonal
HVs, the better the HDC performance. The conventional (Baseline)
HV generation methods with pseudo-random sequences create
low-qualityHVs due to the poor “randomness” of these sequences.
Figure 1 demonstrates the inter-orthogonality between a sample
of tenHVs when utilizing different HV generator sources. The
cosine similarity is used to measure the level of orthogonality [2].
For the pseudo-random method (Figure 1 (a)), the orthogonality is
poor due to existing intrinsic randomness in HV generation. On
the other hand, the one with VDC-2𝑛 sequences performs perfectly,
as there are no fluctuations in its orthogonality plot (Figure 1 (b)). As
the symbol HVs (or Positional HVs) require high orthogonality,
the VDC-2𝑛 sequences may not perform well when the number
of distinct symbols exceeds 𝑙𝑜𝑔2 (𝐷). To address this limitation,
we propose a novel technique to generate independent HVs by
utilizing only one sequence generator (VDC-2), one T flip-flop (T-
FF), and one XOR gate. Figure 1 (c) depicts the inter-orthogonality
performance of the first ten HVs utilizing the proposed single-
random source HV generator.

3 PROPOSED METHOD
3.1 Design 1: Single-Source, Yet Sufficiently-Random

Generator for Position HVs
Our initial design proposal focuses on symbol-based HV genera-
tion and its corresponding encoding. Presently, the SOTA utilizes
any random source, in most cases “pseudo”-random [18, 19]. How-
ever, relying on such random sources poses several risks. Firstly,
there is the issue of randomness, which necessitates repetition.
While a training trial with a particular randomness may yield sat-
isfactory validation accuracy for a classification problem, another
iteration could produce a better or worse result. Consequently, it
is necessary to iterate multiple times to achieve the best accuracy.
The number of needed iterations to guarantee high accuracy, par-
ticularly for the cases of using shorter HVs, can be very high.

All You Need is Unary : End-to-End Bit-Stream Processing in Hyperdimensional Computing ISLPED’24, August 5–7, 2024, Newport Beach, CA

T Q
T-FF

VDC-2

Q T Q T Q T Q T Q T Q T Q T Q T

CLK

Vcc
Tff7 Tff6 Tff5 Tff4 Tff3 Tff2 Tff1 Tff0

MSB LSB

V7 V6 V5 V4 V3 V2 V1 V0 XOR

𝟎 ≤ 𝐒 < 𝐃

CMP

e.g.,110101…1010
S=120, 𝑷𝒓=1/2

MNIST Sample Data

(Number 7)

CNT

D Q
Wth

. . D Q
1th

CLK

111..11 000..00

e.g., pixel value = 75

111..11 1 00..00

Q

W-bit

Left
Shifter

Pixel
value

8-bit
✻ # of
shifts

c

C = 𝐥𝐨𝐠𝟐𝑫− 𝟖 ,𝑫 ≥ 𝟐𝟓𝟔✻

𝐏′

Σ
…

𝐏𝟏′

CLK

e.g., pixel value = 76

Binding

B
u
n
d
l
i
n
g

Encoder

c
o
n
s
e
c
u
t
i
v
e

P
i
x
e
l

v
a
l
u
e
s

Sign

Class
(C)

𝑫 = 𝟏𝟎𝟐𝟒

𝐏𝟐′

𝐏𝟕𝟖𝟒′

𝐋𝟏′

𝐋𝟐′

𝐋𝟕𝟖𝟒′

𝐋′

CMP
Binding

Binding

Single-Source Position Generator

Unary-based Level Generator

Assoc.
Memory

(a)

(b) (c)

Figure 2: The overall design of proposed HV generators. (a) Position HV
generator including 1×VDC-2 random sequence generator + 1×comparator +
1×T-FF + 1×XOR gate. (b) Level HV generator design including 1×up-counter
+ 1×left-shifter + 1×comparator. The output HVs (𝐿′s) are correlated to each
other in a unary format representation. (c) The conventional record-based
encoding in the HDC model.

Another concern with pseudo-randomness inHV generation
is the efficiency of hardware design. The concern extends beyond
its relation to randomness and encompasses hardware design con-
siderations. While it may be acceptable to utilize pre-determined
random vectors for a limited dataset, thereby disregarding compu-
tational load, certain problems require dynamic vector generation.
For instance, in cases where the size of input images (e.g., pixel
positions) varies, additional position vectors are essential. Hence,
an ideal HDC system requires an HV generator with: strong or-
thogonality, lightweight hardware, and reduced iteration to ensure
efficient generation of HVs. To satisfy these requirements, we
use a quasi-random sequence generator to produce the VDC-2 se-
quence. Our primary objective is to achieve optimal randomness
in a single iteration, entangled with the recurrent nature of the
random sequence and an ultra-lightweight design. Distinguishing
itself from the Baseline HDC (with pseudo-random sources, such as
linear-feedback shift registers - LFSR), our method does not employ
multiple random sequences to generate m different D-sized vectors
and subsequently use them forHV generation. Instead, we gen-
erate only a single D-sized sequence and employ it to generate m
different vectors.

Once a VDC-2 sequence is generated, we employ the proposed
circuit structure of Figure 2 (a) to generate different symbol (Po-
sition)HVs. This circuit comprises a T-FF and an XOR gate. The
binary sequence elements are paired and compared with a scalar
(𝑆) value (in binary) within the range [0, D]. Each element from the
VDC-2 generator (with size D) is compared with 𝑆 , and the result is
recorded as logic 1 if 𝑆 > 𝐷 and logic 0 otherwise. The generated
bit is then fed to a T-FF and XORed with itself. With this configura-
tion, the resulting vector exhibits a 1

2 probability (half logic 1s and
half logic 0s) with quasi-random distribution. By repeating this
operation for 𝐾 different symbolHVs, independent quasi-random

1111 ... 1111 000..00 11..111 1 1 111000 000

Unary level HV Random level HV

Single transition Multiple transitions

Figure 3: Unary Level HV compared to the conventional randomly bit-flipped
Level HV.

HVs with a probability of 𝑃𝑟 = 1
2 are generated at a very low cost.

At this juncture, we establish a design checkpoint to report the
cost of the proposed HV generation design. The proposed design
consumes 25% less power than the Baseline design for generating
each 𝐷=1024 size HV .

3.2 Design 2: Unary Computing for Level HVs
Another key contribution of this work is to develop lightweight
logic hardware for representing Level HVs in the HDC system.
For the first time in the literature, we represent Level HVs not
randomly but deterministically by unary generatedHVs.We argue
there is no need for randomness in LevelHVs. Our proposed design
for generating unary style LevelHVs includes a left shifter module,
an up-counter (CNT), and a comparator (CMP). For 𝐷 ≥ 256, the
shifter block shifts the pixel intensity value by (𝑙𝑜𝑔2𝐷 − 8)-bits to
generate the desired Level HV for the current pixel intensity value.
The up-counter is a 𝑙𝑜𝑔2𝐷-bit Johnson counter built with simple D-
type flip flops. The structure of the proposed LevelHV generator is
depicted in Figure 2(b). The rest of the encoding process, including
binding and bundling phases, remains the same as in the Baseline
HDC [20] (Figure 2(c)).

A significant aspect of utilizing unary-style Level HVs is in
their inherent energy efficiency due to a single transition from
0 to 1 (or from 1 to 0) [24], as depicted in Figure 3. Since there
is only one bit-level transition (≈ 0 activity factor), the associated
switching power dissipation is negligible. This provides a signifi-
cant improvement over the BaselineHV generation methods. The
Baseline approach suffers from high switching activity due to lever-
aging a random bit-flipping process [6], which increases the overall
switching (dynamic) power consumption of the system.

4 EXPERIMENTAL RESULTS
4.1 Hardware Efficiency
To evaluate the hardware efficiency of the proposed design, we
implemented the design of Figure 2 in Verilog HDL and synthesized
it using the Synopsys Design Compiler v2018.06 with the 45nm
FreePDK gate library. Table 1 compares the hardware cost of the
Baseline and the proposed Position HV generator. Since the Base-
line Position HV generator utilizes LFSR as the random source,
generating the needed independent and orthogonalHVs signifi-
cantly increases area, power, and energy consumption proportional
to the number of distinct pixel positions inside the image. In other
words, for any image as the model input, we require 𝑟×𝑐 distinct
LFSRs, where r and c are the numbers of image rows and columns,
respectively. On the other hand, incorporating the proposed Posi-
tionHV generator does not require many distinctHV generators.
Employing a single VDC-2 sequence as the random source would be
sufficient to generate independent and orthogonal Position HVs
when integrating it with a T-FF and an XOR gate. Utilizing the

ISLPED’24, August 5–7, 2024, Newport Beach, CA Moghadam, et al.

Table 1: Hardware Cost Comparison of Generating Position HVs using the
Baseline and the Proposed Method (D = 1024)

Design
Approach

Baseline Proposed
CPL
(ns)

Area
(𝜇m2)

Power
(mW)

Energy
(nJ)

CPL
(ns)

Area
(𝜇m2)

Power
(mW)

Energy
(nJ)

Per HV bit 0.380 246 0.797 3.03×10-4 0.430 288 0.597 2.57×10-4

Per entire HV 0.380 246 0.797 0.310 0.430 288 0.597 0.263
Per Image 0.380 192864 624.8 243.0 0.430 288 0.597 206.1

The results are obtained by considering the MNIST dataset images as a reference. ∥ CPL: Critical
Path Latency.

Table 2: Hardware Cost Comparison of Generating a Single Level HV using
the Baseline and the Proposed Method (D = 1024)

Design
Approach

CPL
(ns)

Area
(𝜇m2)

Power
(mW)

Area×Delay
(𝜇m2×ns)

Baseline 0.330 10587 49.621 3493.710
Proposed 0.310 287 0.725 88.970

Considering 8-bit gray-scale image pixels within the [0,255] interval.

proposed Position HV generator reduces the power consumption
by 98% while improving energy efficiency by 15% compared to the
Baseline method.

Similarly, we implemented the proposed unary-based Level HV
generator. In contrast to the Baseline method, which requires flip-
ping the bits in random positions of Level HVs at each iteration,
the proposed method is free from randomness. For the Baseline
approach, we generate Level HVs by flipping 𝐷

𝑀
= 1024

256 number of
bits at each iteration starting with theHV of full zeros (𝑀 is pixel
intensity range or maximum value). Table 2 reports the correspond-
ing hardware costs. As can be seen, the Baseline HDC with random
bit-flipping consumes significantly higher area and power. More
importantly, our proposed unary Level HV generator outperforms
the Baseline design in terms of area-delay product.

4.2 Medical MNIST Performance
We evaluated the performance of the proposed HV generator on
various datasets of medical MNIST (medMNIST) [33], including
DermaMNIST, BloodMNIST, RetinaMNIST, and BreastMNIST. The
primary goal of this analysis is to see how hardware simplifica-
tion in our proposal impacts the accuracy of classification tasks,
particularly those involving challenging biomedical datasets.

The medMNIST contains diverse medical datasets. We selected
specific sub-datasets based on varying numbers of classes. Specif-
ically, DermaMNIST comprises seven classes, BloodMNIST eight,
RetinaMNIST five, and BreastMNIST two classes. Figure 4 assesses
the performance of our proposal (which employs VDC-2-based
single-source random PositionHVs and unary LevelHVs) and the
Baseline design (with pseudo-random sources for Position and Level
HVs) across all datasets. We incorporate epoch-based training
options, given the increased complexity of these datasets compared
to conventional handwritten digit classification tasks [8].

Throughout each epoch, we process the entire training dataset
and evaluate the accuracy of the validation set. We monitor training

Table 3: Performance Metric Equations

Sensitivity 𝑇𝑃
(𝑇𝑃+𝐹𝑁) F1-Measure 2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃 Balanced Acc. 𝑆𝑒𝑛𝑠𝑖𝑡 .+𝑆𝑝𝑒𝑐𝑖 𝑓 .

2

Specificity 𝑇𝑁
(𝐹𝑃+𝑇𝑁) FMI

√︁
(𝑃𝑟𝑒𝑐. × 𝑆𝑒𝑛𝑠𝑖𝑡 .)

accuracy and perform bias-variance checks to ensure generaliza-
tion and avoid overfitting. The best-performing model from the
validation is tested based on heatmap confusion matrix metrics,
including sensitivity, precision, specificity, F1-measure, balanced
accuracy, and Fowlkes–Mallows Index (FMI). The equations of all
these metrics are given in Table 3 (𝑇𝑃 : True Positives, 𝑇𝑁 : True
Negatives, 𝐹𝑃 : False Positives, and 𝐹𝑁 : False Negatives).

Examining the results, our method consistently outperforms
in accuracy (𝐴𝑐𝑐 : 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) as depicted in Figures 4 (a),
(c), (e), and (g). When assessing the validation accuracy perfor-
mance for the initial 30 epochs, the gradual ascent indicates faster
improvement with our method compared to the Baseline design.
Furthermore, the Baseline design needs to undergo more than one
iteration. Hence, for the Baseline design with random HV gen-
erators, we present the best result among 10 trials. We adopted
a learning rate (𝜂)-based model update for incremental learning.
During each sampling process, the model undergoes validation
accuracy evaluation, considering the impact of the new training
sample HV (ℎ). If validation improves based on the new contribu-
tion to the classHV (𝐶), then the training sample’s effect on the
learning model is incorporated, contributing to the classHV via
accumulation (as illustrated in Figure 2 (c)). The formula for updat-
ing classHV in the event of validation accuracy improvement is
𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 + (𝜂 × ℎ) (otherwise, it is 𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 − (𝜂 × ℎ) [25]).
Our experiments achieved optimal results around 𝜂=0.1 and 𝜂=0.2.
We reported the results based on 𝜂=0.1.

Next, we conducted a more comprehensive model evaluation for
each dataset using confusion matrices. Heatmap plots in Figure 4
visualize the improvement of each metric from 0 to 1. Generally,
for each metric, our design consistently outperforms the Baseline
design (Figures 4 (b), (d), (f), and (h)) when considering the perfor-
mance of individual class labels. For example, for DermaMNIST,
the sensitivity (a metric indicating the correctly predicted positive
values) never drops to 0.1 with our approach, whereas the Base-
line design reaches that level for some classes. The highest scores
achieved in both architectures are for specificity (representing the
proportion of correctly predicted negative cases). For precision
(true positive accuracy, reflecting confidence score), our design
outperforms for nearly every per-class label across datasets. Addi-
tionally, the proposed architecture exhibits superior performance
for F1-measure, which considers both precision and recall. The
second-best metric for both hardware architectures is balanced
accuracy, offering a more insightful perspective for performance
analysis considering imbalanced confusion matrices (i.e., unevenly
distributed class labels). Lastly, FMI, a similarity calculation met-
ric, consistently yields better scores with our HDC architecture,
indicating higher predicted-actual class similarities. Thus, the new
hardware design with VDC-2 sequences and unary processing facil-
itates end-to-end processing with a lightweight design and better

All You Need is Unary : End-to-End Bit-Stream Processing in Hyperdimensional Computing ISLPED’24, August 5–7, 2024, Newport Beach, CA

Data
Samples

DermaMNIST(a) OURS

Data
Samples

DermaMNIST(b) BASELINE

Data
Samples

BloodMNIST(c) OURS

Data
Samples

BloodMNIST(d) BASELINE

Data
Samples

RetinaMNIST(e) OURS

Data
Samples

BreastMNIST(g) OURS

Data
Samples

BreastMNIST(h) BASELINE

Data
Samples

RetinaMNIST(f) BASELINE

Figure 4: Performance evaluation of the proposed architecture on Medical MNIST datasets [33]. (a) Our approach in DermaMNIST, (b) Baseline HDC in DermaMNIST,
(c) Our approach in BloodMNIST, (d) Baseline HDC in BloodMNIST, (e) Our approach in RetinaMNIST, (f) Baseline HDC in RetinaMNIST, (g) Our approach in
BreastMNIST, and (h) Baseline HDC in BreastMNIST. 𝐷=1024 in all experiments.

ML performance, even for challenging medical datasets across vari-
ous performance metrics.

5 CONCLUSION
Hypervector (HV) generation is a crucial step in Hyperdimen-
sional Computing (HDC) in terms of accuracy and hardware effi-
ciency. The record-based encoding of HDC necessitates incorpo-
rating orthogonalHVs for the Positional data types and utilizing

correlated neighbor HVs for the Level HVs. The state-of-the-art
(SOTA) methods employ pseudo-randomness for generating orthog-
onal Positional HVs. The intrinsic nature of pseudo-randomness
leads to the deterioration of the overall model performance and
throughput of the HDC system. In this work, we apply ➀ Van der
Corput (VDC) quasi-random sequence for generating PositionHVs
and ➁ unary-based Level HV for the first time in the HDC liter-
ature. While the SOTA methods utilize distinct random sources

ISLPED’24, August 5–7, 2024, Newport Beach, CA Moghadam, et al.

for generating Position HVs, our proposal utilizes a single cost-
efficient sequence generator. We avoid using a random bit-flipping
scheme by employing unary-based Level HV generation. This
makes the hardware implementation more convenient and efficient.
Our evaluation results demonstrate significant improvements of
6.4%, 98%, and 15% in classification accuracy, power consumption,
and energy efficiency, respectively.

6 ACKNOWLEDGMENTS
This work was supported in part by the National Science Founda-
tion (NSF) under Grants 2339701, 2019511 and in part by generous
gifts from Xilinx and Nvidia.

REFERENCES
[1] Hussam Amrouch, Mohsen Imani, Xun Jiao, Yiannis Aloimonos, Cornelia Fer-

muller, Dehao Yuan, Dongning Ma, Hamza E. Barkam, Paul R. Genssler, and Peter
Sutor. 2022. Brain-Inspired Hyperdimensional Computing for Ultra-Efficient Edge
AI. In 2022 CODES+ISSS. https://doi.org/10.1109/CODES-ISSS55005.2022.00017

[2] Fatemeh Asgarinejad, Xiaofan Yu, Danlin Jiang, Justin Morris, Tajana Rosing,
and Baris Aksanli. 2024. Enhanced Noise-Resilient Pressure Mat System Based
on Hyperdimensional Computing. Sensors 24, 3 (2024). https://doi.org/10.3390/
s24031014

[3] Alaaddin Goktug Ayar, Sercan Aygun, M. Hassan Najafi, and Martin Margala.
2024. Word2HyperVec: From Word Embeddings to Hypervectors for Hyper-
dimensional Computing. In Proceedings of the Great Lakes Symposium on VLSI
2024 (GLSVLSI ’24). Association for Computing Machinery, New York, NY, USA,
355–356. https://doi.org/10.1145/3649476.3658795

[4] Sercan Aygun, Mehran Shoushtari Moghadam, and M. Hassan Najafi. 2024. uHD:
Unary Processing for Lightweight and Dynamic Hyperdimensional Computing.
In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1–6.

[5] Sercan Aygun, Mehran Shoushtari Moghadam, M. Hassan Najafi, and Mohsen
Imani. 2023. Learning from Hypervectors: A Survey on Hypervector Encoding.
arXiv:2308.00685 [cs.LG]

[6] Toygun Basaklar, Yigit Tuncel, Shruti Yadav Narayana, Suat Gumussoy, and
Umit Y. Ogras. 2021. Hypervector Design for Efficient Hyperdimensional Com-
puting on Edge Devices. arXiv:arXiv:2103.06709

[7] Sohum Datta, Ryan A. G. Antonio, Aldrin R. S. Ison, and Jan M. Rabaey. 2019. A
Programmable Hyper-Dimensional Processor Architecture for Human-Centric
IoT. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 3
(2019), 439–452. https://doi.org/10.1109/JETCAS.2019.2935464

[8] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[9] Lulu Ge and Keshab K. Parhi. 2020. Classification using hyperdimensional
computing: A review. IEEE Circ. and Syst. Mag. 20, 2 (2020), 30–47. https:
//doi.org/10.1109/mcas.2020.2988388

[10] Yilun Hao, Saransh Gupta, Justin Morris, Behnam Khaleghi, Baris Aksanli, and
Tajana Rosing. 2021. Stochastic-HD: Leveraging stochastic computing on hyper-
dimensional computing. In 2021 IEEE ICCD. 321–325. https://doi.org/10.1109/
ICCD53106.2021.00058

[11] Arman Kazemi, Mohammad Mehdi Sharifi, Zhuowen Zou, Michael Niemier,
X. Sharon Hu, and Mohsen Imani. 2021. MIMHD: Accurate and Efficient Hyperdi-
mensional Inference Using Multi-Bit In-Memory Computing. In 2021 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). 1–6.
https://doi.org/10.1109/ISLPED52811.2021.9502498

[12] Jiseung Kim, Hyunsei Lee, Mohsen Imani, and Yeseong Kim. 2024. Advancing
Hyperdimensional Computing Based on Trainable Encoding and Adaptive Train-
ing for Efficient and Accurate Learning. ACM Trans. Des. Autom. Electron. Syst.
(Jun 2024). https://doi.org/10.1145/3665891

[13] Kei Kitagawa, Kohei Tsuji, Koyo Sagehashi, Tomoaki Niiyama, and Satoshi
Sunada. 2024. Optical hyperdimensional soft sensing: speckle-based touch in-
terface and tactile sensor. Opt. Express 32, 3 (Jan 2024), 3209–3220. https:
//doi.org/10.1364/OE.513802

[14] Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov, and Abbas Rahimi. 2022.
A Survey on Hyperdimensional Computing Aka Vector Symbolic Architectures,
Part I: Models and Data Transformations. ACM Comput. Surv. 55, 6, Article 130
(dec 2022), 40 pages. https://doi.org/10.1145/3538531

[15] Dehua Liang, Jun Shiomi, Noriyuki Miura, and Hiromitsu Awano. 2024. StrideHD:
A Binary Hyperdimensional Computing System Utilizing Window Striding for
Image Classification. IEEE Open Journal of Circuits and Systems 5 (2024), 211–223.

https://doi.org/10.1109/OJCAS.2024.3401028
[16] S. Liu and J. Han. 2018. Toward energy-efficient stochastic circuits using parallel

sobol sequences. IEEE TVLSI 26, 7 (2018).
[17] Dongning Ma, Cong Hao, and Xun Jiao. 2024. Hyperdimensional computing

vs. neural networks: Comparing architecture and learning process. In 2024 25th
International Symposium on Quality Electronic Design (ISQED). IEEE, 1–5.

[18] Alisha Menon, Anirudh Natarajan, Laura I. Galindez Olascoaga, Youbin Kim,
Braeden Benedict, and Jan M. Rabaey. 2022. On the Role of Hyperdimensional
Computing for Behavioral Prioritization in Reactive Robot Navigation Tasks.
In 2022 International Conference on Robotics and Automation (ICRA). 7335–7341.
https://doi.org/10.1109/ICRA46639.2022.9811939

[19] Alisha Menon, Daniel Sun, Melvin Aristio, Harrison Liew, Kyoungtae Lee, and
Jan M. Rabaey. 2021. A Highly Energy-Efficient Hyperdimensional Computing
Processor for Wearable Multi-Modal Classification. In BioCAS. 1–4. https://doi.
org/10.1109/BioCAS49922.2021.9645008

[20] Mehran Shoushtari Moghadam, Sercan Aygun, and M. Hassan Najafi. 2023.
No-Multiplication Deterministic Hyperdimensional Encoding for Resource-
Constrained Devices. IEEE ESL (2023). https://doi.org/10.1109/LES.2023.3298732

[21] Mehran Shoushtari Moghadam, Sercan Aygun, Mohsen Riahi Alam, and M. Has-
san Najafi. 2024. P2LSG: Powers-of-2 Low-Discrepancy Sequence Generator for
Stochastic Computing. (2024). In ASP-DAC 2024.

[22] Justin Morris, Yilun Hao, Saransh Gupta, Behnam Khaleghi, Baris Aksanli, and
Tajana Rosing. 2022. Stochastic-HD: Leveraging stochastic computing on the
hyper-dimensional computing pipeline. Front. in Neurosc. 16 (2022).

[23] M. Hassan Najafi, David. J. Lilja, Marc D. Riedel, and Kia Bazargan. 2018. Low-
Cost Sorting Network Circuits Using Unary Processing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 26, 8 (2018), 1471–1480. https://doi.
org/10.1109/TVLSI.2018.2822300

[24] M. Hassan Najafi, David. J. Lilja, Marc D. Riedel, and Kia Bazargan. 2018. Low-
Cost Sorting Network Circuits Using Unary Processing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 26, 8 (2018), 1471–1480. https://doi.
org/10.1109/TVLSI.2018.2822300

[25] Yujin Nam, Minxuan Zhou, Saransh Gupta, Gabrielle De Micheli, Rosario Cam-
marota, Chris Wilkerson, Daniele Micciancio, and Tajana Rosing. 2023. Efficient
Machine Learning on Encrypted Data Using Hyperdimensional Computing. In
2023 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED). 1–6. https://doi.org/10.1109/ISLPED58423.2023.10244262

[26] Prathyush Poduval, Zhuowen Zou, Hassan Najafi, Houman Homayoun, and
Mohsen Imani. 2021. StocHD: Stochastic hyperdimensional system for efficient
and robust learning from raw data. In 2021 DAC. 1195–1200. https://doi.org/10.
1109/DAC18074.2021.9586166

[27] Netanel Raviv. 2024. Linear Codes for Hyperdimensional Computing.
arXiv:2403.03278 [cs.IT]

[28] Mehran Shoushtari Moghadam, Sercan Aygun, Mohsen Riahi Alam, Jonas I
Schmidt, M. Hassan Najafi, and Nima Taherinejad. 2024. Accurate and Energy-
Efficient Stochastic Computing with Van Der Corput Sequences. In Proceedings of
the 18th ACM International Symposium on Nanoscale Architectures (NANOARCH
’23). Association for Computing Machinery, New York, NY, USA, Article 27,
6 pages. https://doi.org/10.1145/3611315.3633265

[29] Ruixuan Wang, Sabrina Hassan Moon, Xiaobo Sharon Hu, Xun Jiao, and Dayane
Reis. 2024. A Computing-in-Memory-Based One-Class Hyperdimensional Com-
puting Model for Outlier Detection. IEEE Trans. Comput. 73, 6 (2024), 1559–1574.
https://doi.org/10.1109/TC.2024.3371782

[30] You Wang, Yefan Xu, Yu Gong, Ke Chen, and Weiqiang Liu. 2023. STT-MRAM
Based Highly Orthogonal Hypervector Generator for Hyperdimensional Com-
puting. In 2023 IEEE 23rd International Conference on Nanotechnology (NANO).
666–670. https://doi.org/10.1109/NANO58406.2023.10231281

[31] Di Wu, Jingjie Li, Zhewen Pan, Younghyun Kim, and Joshua San Miguel. 2022.
UBrain: A Unary Brain Computer Interface. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 468–481. https:
//doi.org/10.1145/3470496.3527401

[32] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and Joshua San
Miguel. 2020. UGEMM: Unary Computing Architecture for GEMM Applications.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 377–390. https://doi.org/10.1109/ISCA45697.2020.00040

[33] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. 2023. MedMNIST v2 - A large-scale lightweight bench-
mark for 2D and 3D biomedical image classification. Scientific Data 10, 1 (19 Jan
2023), 41. https://doi.org/10.1038/s41597-022-01721-8

[34] Tianyang Yu, Bi Wu, Ke Chen, Gong Zhang, and Weiqiang Liu. 2024. Fully
Learnable Hyperdimensional Computing Framework With Ultratiny Accelerator
for Edge-Side Applications. IEEE Trans. Comput. 73, 2 (2024), 574–585. https:
//doi.org/10.1109/TC.2023.3337316

[35] Zhuowen Zou, Haleh Alimohamadi, Ali Zakeri, Farhad Imani, Yeseong Kim,
M. Hassan Najafi, and Mohsen Imani. 2022. Memory-inspired spiking hyperdi-
mensional network for robust online learning. Scientific Reports 12, 1 (10 May
2022), 7641. https://doi.org/10.1038/s41598-022-11073-3

https://doi.org/10.1109/CODES-ISSS55005.2022.00017
https://doi.org/10.3390/s24031014
https://doi.org/10.3390/s24031014
https://doi.org/10.1145/3649476.3658795
https://arxiv.org/abs/2308.00685
https://arxiv.org/abs/arXiv:2103.06709
https://doi.org/10.1109/JETCAS.2019.2935464
https://doi.org/10.1109/mcas.2020.2988388
https://doi.org/10.1109/mcas.2020.2988388
https://doi.org/10.1109/ICCD53106.2021.00058
https://doi.org/10.1109/ICCD53106.2021.00058
https://doi.org/10.1109/ISLPED52811.2021.9502498
https://doi.org/10.1145/3665891
https://doi.org/10.1364/OE.513802
https://doi.org/10.1364/OE.513802
https://doi.org/10.1145/3538531
https://doi.org/10.1109/OJCAS.2024.3401028
https://doi.org/10.1109/ICRA46639.2022.9811939
https://doi.org/10.1109/BioCAS49922.2021.9645008
https://doi.org/10.1109/BioCAS49922.2021.9645008
https://doi.org/10.1109/LES.2023.3298732
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/ISLPED58423.2023.10244262
https://doi.org/10.1109/DAC18074.2021.9586166
https://doi.org/10.1109/DAC18074.2021.9586166
https://arxiv.org/abs/2403.03278
https://doi.org/10.1145/3611315.3633265
https://doi.org/10.1109/TC.2024.3371782
https://doi.org/10.1109/NANO58406.2023.10231281
https://doi.org/10.1145/3470496.3527401
https://doi.org/10.1145/3470496.3527401
https://doi.org/10.1109/ISCA45697.2020.00040
https://doi.org/10.1038/s41597-022-01721-8
https://doi.org/10.1109/TC.2023.3337316
https://doi.org/10.1109/TC.2023.3337316
https://doi.org/10.1038/s41598-022-11073-3

	Abstract
	1 Introduction
	2 Background
	3 Proposed Method
	3.1 Design 1: Single-Source, Yet Sufficiently-Random Generator for Position HVs
	3.2 Design 2: Unary Computing for Level HVs

	4 Experimental Results
	4.1 Hardware Efficiency
	4.2 Medical MNIST Performance

	5 Conclusion
	6 Acknowledgments
	References

