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Abstract— Images are often corrupted with noise. As a
result, noise reduction is an important task in image processing.
Common noise reduction techniques, such as mean or median
filtering, lead to blurring of the edges in the image, while fuzzy
filters are able to preserve the edge information. In this work, we
implement an efficient hardware design for a well-known fuzzy
noise reduction filter based on stochastic computing. The filter
consists of two main stages: edge detection and fuzzy smoothing.
The fuzzy difference, which is encoded as bit-streams, is used to
detect edges. Then, fuzzy smoothing is done to average the pixel
value based on eight directions. Our experimental results show a
significant reduction in the hardware area and power consump-
tion compared to the conventional binary implementation while
preserving the quality of the results.

Index Terms—Stochastic computing, fuzzy logic, noise reduc-
tion, low-cost design.

I. INTRODUCTION

Today, hardware-based data processing is bounded by some
strict design constraints such as low power consumption,
small circuit area, and reliability. Power and area costs, in
particular, are the main concerns in designing embedded
systems. Weighted binary radix has been the dominant format
for the representation of data in these systems. Computation
on this representation is rather complex and hence costly
as each bit has its own weight according to its position.
Considering the complexity of conventional binary designs,
unconventional design techniques are receiving more and more
attention. Stochastic computing (SC) is one of the unconven-
tional technique that offers low-cost design and high tolerance
to noise [3], [9], [20]. In SC, numbers in the [0, 1] interval
are presented using streams of random bits. The input data is
encoded by the probability of obtaining a one versus a zero.

Complex arithmetic operations can be implemented us-
ing simple logic gates in SC. For example, multiplication
operation can be performed using a single AND gate fed
with uncorrelated (independent) bit-streams. This provides a
significantly lower hardware cost compared to conventional
binary multiplication. SC has been used for implementing low-
cost designs for different application domains, from image
and video processing [16] to sound processing [21], neural
networks [12], sorting [13], and fuzzy [14], to name a few.

The theory of fuzzy logic [10] has been investigated in
numerous applications, including control systems, real-time

embedded systems, robotics, security, image and signal pro-
cessing, telecommunications, decision-making support sys-
tems, and chemical industry [6]. In particular, fuzzy techniques
have produced promising results for different image processing
applications [15] with numerous practical works such as in
industrial and medical image processing [11], [7]. In this
work, as the first study of its kind, we apply the concept of
SC to fuzzy logic-based filtering for image noise reduction.
In contrast to the two-valued logic in the binary sets (true
or false), fuzzy-logic variables have truth values in the [0, 1]
interval, the acceptable range of data in SC. In this work, we
exploit the concept of SC for the hardware-efficient design
of fuzzy filtering image noise reduction. Inspired by the fuzzy
noise reduction technique of [22], our system estimates a fuzzy
derivative to distinguish between local variations due to noise
and image structure. Our proposed SC design takes advantage
of the state-of-the-art low-discrepancy (LD) bit-streams [19]
for low-latency yet high accuracy processing. Our synthesis
results show a significant reduction in the hardware area,
power, and energy consumption compared to the conventional
binary implementation.

The rest of this paper is organized as follows. Section II
presents background information on SC and the implemented
fuzzy filter technique. Section III describes our proposed SC-
based design. Section IV evaluates the hardware efficiency
and the performance of the proposed architecture. Finally,
Section V concludes the paper.

II. BACKGROUND

A. Stochastic Computing

Stochastic computing (SC) is an unconventional computing
paradigm operating on random bit-streams. Independent of
the length, the ratio of the number of ones to the length
of the stream determines the bit-stream value. For example,
1101011101 is a representation for 0.7 in the stochastic do-
main. Conventionally, to convert data from conventional binary
to stochastic representation, a random number from a random
number source is compared with a constant number (i.e., the
input data). The output of this comparison produces one bit
of the bit-stream. For an N -bit bit-stream, the input number
is compared with N random numbers. Implementing complex
operations with simple hardware and the ability to tolerate high
rates of noise are the primary advantages of SC. Minimum
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and maximum operations, for example, are two operations
widely used in the fuzzy system with simple implementation
in the stochastic domain. The minimum/maximum operation
is implemented with a single AND/OR gate when fed with two
correlated bit-streams, i.e., two bit-streams with a maximum
overlap in the position of ones [3]. The conventional binary
implementation of these operations, however, requires an n-
bit comparator and an n-bit multiplexer (MUX). This results
in a higher hardware area and power cost with the binary
implementation. SC-based designs are independent of the
precision of data; the same design can process input data with
higher precision by processing longer bit-streams.

Conventionally, pseudo-random number generators are used
in SC systems to convert data from binary to stochastic bit-
streams. Recently, quasi-random number generators, such as
Sobol [17] and Halton [4] sequence generators, have been used
to generate high-quality low discrepancy (LD) bit-streams.
LD bit-streams provide higher accuracy with significantly
shorter bit-streams compared to conventional pseudo-random
bit-streams. 1s and 0s are uniformly spaced in LD bit-streams,
so the bit-streams do not suffer from the random fluctuations
error [17]. The bit-streams converge faster to the expected
results, resulting in a lower processing time and energy con-
sumption.

In this work, we use Sobol sequences to generate LD bit-
streams. The first 2N numbers of any Sobol sequence can
precisely present all possible N -bit precision numbers in the
[0,1] interval. Hence, the only error in converting an N -
bit precision data to a 2N Sobol-based LD bit-stream is the
quantization error [18]. Sobol sequence generators, however,
are costly to implement in hardware. For a lower bit-stream
generation cost compared to conventional comparator-based
LD bit-stream generator that requires a costly Sobol sequence
generator, we use the finite-state machine (FSM)-based LD
bit-stream generator proposed in [5] to generate Sobol-based
LD bit-streams.

B. Fuzzy Filtering Technique

Noise reduction with feature preservation is a fundamental
problem in image processing. One of the main types of
noise is additive noise. This noise is defined when a value
with a specific distribution (e.g., Gaussian distribution) is
added to each image pixel. The fuzzy filter of this work
aims to remove the additive noise from input images. In
contrast to the mean and median filter-based noise reduction
techniques, which result in loss of edge information, the
selected filter can preserve edge information and details of
the image. The first stage for processing each image pixel
is to compute a fuzzy derivative. A set of 16 fuzzy rules is
then fired to determine a correction term for the processed
pixel value. These rules use the fuzzy derivative as input.
Small, negative and positive membership functions
are used in our fuzzy filter. The small membership function
can be adapted for more iterations of noise reduction. In this
approach, detecting the edges near the target pixel is the first
step in removing noise. Consider a 3 × 3 neighborhood of

Fig. 1. 3× 3 neighborhood of pixel (x, y).

pixel(x, y) as shown in Fig. 1. The derivative in direction D
(D ∈ dir = {NW,W,SW,S, SE,E,NE,N}) is defined as
the difference between pixel(x, y) and its neighbor in the D
direction. This derivative value is denoted by ∆D(x, y).

Consider an edge passing through the neighborhood of a
pixel(x, y) in the SW − NE direction. The derivative value
∆NW (x, y) will be large, but also the derivative values of the
neighboring pixels perpendicular to the edge’s direction can
be large. For example, in the NW direction, we can calculate
∆NW (x, y), ∆NW (x − 1, y + 1), and ∆NW (x + 1, y − 1).
The idea is to reduce the effect of one derivative value, which
is high due to noise. Therefore, if two out of three derivative
values are small, we can assume that no edge is present in
this direction [22]. This observation will be considered when
we formulate the fuzzy rule to calculate the fuzzy derivative
values. We define the following membership function:

m(a) =

{
1− |a|

Sd , 0 ≤ a ≤ Sd
0, |a| > Sd

(1)

where Sd is an adaptive parameter. For example, the
value of the fuzzy derivative ∆F

NW (x, y) for pixel(x, y) in
the NW -direction is calculated by applying the following rule:

if (∆NW (x, y) is small and ∆NW (x−1, y+1) is small)
or (∆NW (x, y) is small and ∆NW (x+1, y−1) is small)
or (∆NW (x−1, y+1) is small and ∆NW (x+1, y−1) is
small)
then ∆F

NW (x, y) is small.

Sd determines the spread of the small membership func-
tion and ultimately the threshold for edge detection. Instead of
sampling the whole image for standard deviation (STD), we
take k×k blocks of the image and find their STD. We then take
the minimum STD across all blocks. We choose K = 6 for
efficiency [2]. This minimum deviation Sd will always be less
than the deviation in case of an edge. Finally, we multiply STD
by an amplification parameter (α) to increase noise reduction:

Sd = α× standard deviation (2)

We use a pair of fuzzy rules for each direction to compute
the correction term for the processed pixel value. The idea
behind these rules is as follows: if no edge is present in a
specific direction, the derivative value in that direction can
and will be used to compute the correction term. The first
part (edge assumption) can be realized by using the fuzzy
derivative value. For the second part (filtering), we must
distinguish between the positive and negative values of the
correction term. We can specify the following fuzzy rules to
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Fig. 2. General design of the fuzzy filtering technique.
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Fig. 3. An example a 3×3 block with the center pixel (2, 2). Eight directions
with their representative pixel values are illustrated.

obtain the final correction for a direction:

CDp :if ∆F
NW (x, y) is small and ∆NW (x, y) is positive)

then c is positive
CDn

:if ∆F
NW (x, y) is small and ∆NW (x, y) is negative)

then c is negative

After obtaining CDp
and CDn

for all directions, we can
average their value to obtain the final correction:

∆C(x, y) = ΣD∈directions(CDp
− CDn

)/8 (3)

III. PROPOSED SC-BASED DESIGN

In this section, we present our proposed SC hardware
architecture for the discussed fuzzy filtering noise reduction
technique. As shown in Fig. 2, the design consists of two main
parts: 1) correction calculator and 2) correction accumulator.
We consider a 3× 3 block window. For each center pixel, the
correction value is calculated in eight directions. Fig. 3 shows
an example of a 3×3 block window with eight directions. The
calculated correction values of each direction are summed up

Min
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Fig. 4. Conventional Binary Implementation of the Correction Calculator.

AddAddAdd DivDiv
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Output

Corr1

Corr8

...

Fig. 5. Conventional Binary Implementation of the Correction Accumulator.

together and the produced result will be added to the input
pixel value.

A. Correction Calculator

Fig. 4 shows the conventional binary architecture of the
correction calculator. Fig. 6 illustrates the corresponding SC-
based implementation. First, the input values (∆(x,y) values
for eight directions) are converted to stochastic bit-streams
using a stochastic number generator (SNG) unit. Fig. 8 shows
the structure of the SNG unit. The inputs are converted to
Sobol-based LD bit-streams using the FSM-based bit-stream
generator proposed in [5]. One FSM is shared for converting
all inputs. However, each input is connected to a different
MUX unit. Considering a 3×3 block window, we compute the
fuzzy derivative values for eight directions. Also, we have an
adaptive parameter, Sd. So, in total, we need 3×8+1=25 MUX
units in the SNG unit. The fuzzy rule, a min-based function, is
implemented using a standard AND gate. According to Equa-
tion 1, the small membership function consists of a division,
a comparator, and a subtraction unit. For division, we employ
a state-of-the-art SC division circuit, called CORDIV [8], that
exploits the correlation between input bit-streams to realize the
division operation. CORDIV not only has a lower hardware
cost than the previous stochastic division circuits but also
provides higher accuracy. In the conventional binary design,
the comparator unit checks the division output to see if the
value is less than one. A comparator unit is unnecessary in the
stochastic design as the values are in the [0, 1] interval. The
subtraction unit can be implemented with a standard OR-gate
in the stochastic design. The last operation in the correction
calculator circuit is multiplication. As shown in Equation 2,
the final result is the correction component of direction D and
is a fraction of ∆(x,y).

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore.  Restrictions apply. 



 Opt
Process

Sub

Abs 
Value 
Sub

 

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Abs 
Value 
Sub

 Abs 
Value 
Sub

 
‘1’

ANDAND XOR
ANDAND

D

MUX

D

MUX

Corr1S
N
G

Fig. 6. Stochastic-based Implementation of the Correction Calculator.

CompComp

Corr1
MUXMUX

MUXMUX

(x-1,y-1) (x,y-1) (x+1,y-1)

(x-1,y) (x,y) (x+1,y)

(x-1,y+1) (x,y+1) (x+1,y+1)

(x-1,y-1) (x,y-1) (x+1,y-1)

(x-1,y) (x,y) (x+1,y)

(x-1,y+1) (x,y+1) (x+1,y+1)

‘0’

‘0’

N1

P1

AdditionSubSub DivDiv

8

input

Output

1N1N

...

8N

1P1P
...

8P

Accumulative 
Parallel 
Counter 

Accumulative 
Parallel 
Counter 

Fig. 7. Stochastic-based Implementation of the Correction Accumulator.

 Mux Mux

FSM-based Sobol generator

Clock

FSM-based Sobol generator

Clock

...

...

...
...

‘0’

 Mux Mux

...

‘0’a24
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Fig. 8. SNG unit design. (a1,...,a24) are the ∆(x, y) values calculated for
pixel(x,y) and its neighbouring pixels in 8 directions. The other input is the
adaptive parameter Sd.

B. Correction Accumulator

Fig. 5 shows the block diagram of the conventional binary
design for the correction accumulator. After calculating the
correction values of all directions, we average their value to
obtain the final correction value. The final value result will
then be added to the pixel value. The correction values of
each direction are either positive or negative depending on
the sign of the ∆(x,y) value of the direction. A common
approach for handling negative data in the stochastic domain is
by extending the range of numbers from [0, 1] to [−1, 1] using
a linear transformation in a so-called bipolar encoding [3].
Bipolar SC, however, requires twice bit-stream length and

so twice processing time for the same accuracy compared to
stochastic unipolar encoding. We divide the correction values
into positive and negative subsets to handle negative correction
values in the proposed correction accumulator. As shown in
Fig. 7, a comparator is used to determine the sign of ∆(x,y).
For example, if the value of pixel (x+1,y) is greater than
the value of pixel (x,y), ∆E(x,y) and so the correction value
are positive. In the accumulation step (Accumulative Parallel
Counter (APC)), the correction values in the “positive” subset
and the “negative” subset are accumulated separately using
binary adders, implicitly converting them from bit-stream to
binary representation. The outputs of the two APC units are
then subtracted from each other. In the last step, the final
correction value is divided by eight and is added to the original
input pixel.

IV. DESIGN EVALUATION

In this section, we evaluate the hardware cost and the
performance of the proposed SC design compared to the
conventional binary implementation of the discussed fuzzy
noise reduction technique.

A. Cost Comparison
For hardware cost comparison, we developed RTL VHDL

descriptions for the proposed SC-based and the conventional
binary design. The designs were synthesized using the Syn-
opsys Design Compiler v2018.06 with the 45nm FreePDK
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TABLE I
HARDWARE COST COMPARISON OF THE PROPOSED SC AND CONVENTIONAL BINARY DESIGN.

THE BIT-STREAM LENGTH FOR THE SC DESIGNS IS 2BW , WHERE BW IS THE BIT WIDTH.

Bit
Width

Area
(µm2)

Power @Max Frequency
(mW )

Critical Path
(ns)

Energy
(pj)

Proposed Conventional Proposed Conventional Proposed Conventional Proposed Conventional
2 2,652 30,552 1.47 7.97 0.99 5.42 5.82 43.24
3 2,907 33,209 1.52 8.66 0.99 5.42 12.05 47.00
4 3,049 34,957 1.54 9.07 1.00 5.59 24.68 50.74
5 3,367 38,841 1.65 10.08 1.05 5.83 55.59 58.73
6 4,175 51,787 1.75 10.81 1.05 5.83 117.6 62.98
7 4,348 53,389 1.71 11.23 1.05 5.83 229.6 65.50
8 4,895 59,988 1.75 11.54 1.06 5.89 476.1 67.98

TABLE II
ACCURACY EVALUATION (MSE) OF THE PROPOSED SC WITH DIFFERENT
BIT-STREAM LENGTHS (BL) AND THE CONVENTIONAL BINARY DESIGN

σ = 5 σ = 10 σ = 15
Noisy image 1377 2381 3175

Conventional Binary Fuzzy Filter 310 605 883
Proposed Fuzzy Filter (BL=8) 335 661 901

Proposed Fuzzy Filter (BL=16) 321 631 897
Proposed Fuzzy Filter (BL=32) 317 629 891

library [1]. We report the synthesis results for different data
bit-widths (i.e., M = 2, 3, 4, 5, 6, 7 and 8). Table I reports the
synthesis results in terms of hardware footprint area, power
consumption at maximum working frequency, critical path
latency, and energy consumption. The energy consumption of
the proposed design is calculated by finding power × critical
path latency × number of clock cycles. As it can be seen,
the proposed design achieves up to 91.8% savings in the
hardware area and 84.7% reduction in power consumption.
The proposed design achieves a lower area and power cost for
all data bit-widths. However, in terms of energy consumption,
the proposed design provides lower energy for bit-widths less
than six. The energy saving rate decreases by increasing the
data-width as the number of processing cycles in the proposed
design increases by increasing the precision of data.

B. Accuracy Comparison

The fixed-point baseline design and the proposed bit-stream-
based design were implemented in MATLAB for accuracy
evaluation. Both approaches were evaluated with a test image
after adding different levels of Gaussian noise. Figure 9 shows
the representative test image. We corrupted the image with
the variance of Gaussian noise equal to 5, 10, and 15. To
evaluate the results, we calculated the mean squared error
(MSE) between the original image and the filtered image. For
high noise levels, we need to apply more iterations to reach an
MSE close to the median filter. However, one or two iterations
give us an acceptable noise reduction for low noise levels.
For more noise reduction, we can increase the amplification
α factor. Table II reports the MSE results. For the variance

Fig. 9. Original Test Image.

Fig. 10. Noisy image with additive Gaussian noise of variance = 10.

equal to 5, both the baseline and proposed stochastic filters
are applied in only one iteration. Three iterations are done to
achieve a lower MSE for the variance of Gaussian noise equal
to 10 and 15. The proposed SC fuzzy filter design performs as
well as the conventional binary-based fuzzy filter. The MSE
obtained from the proposed design is negligibly higher than the
baseline design, mainly due to the quantization errors. Figure
10 shows the dog image with noise var = 10. A 7×7 Median
filter and the fuzzy filter in stochastic and binary domains are
applied to the noisy image. As seen in Figure 11, the median
filter was unable to preserve the image’s details, such as the
grass, the border of the dog body and the image background
is blurred. However, both designs of the fuzzy filter were able
to keep the small details, and the output is sharper.
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(a)

(b)

(c)
Fig. 11. The output image after applying (a) conventional fuzzy filtering,
(b) stochastic-based fuzzy filtering, and (c) median filtering (7× 7).

V. CONCLUSION

This work proposed a low-cost hardware design for a fuzzy
noise reduction filter based on stochastic computing. The main
idea is to distinguish between local variations due to noise
and due to image structures such as edges. Synthesis results
confirm the efficiency of the proposed design. The stochastic-
based design provides significant saving in the hardware
area and power costs compared to the conventional binary
implementation while preserving the quality of the results.
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