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Abstract

Precise crop yield prediction provides valuable infor-
mation for agricultural planning and decision-making pro-
cesses. However, timely predicting crop yields remains
challenging as crop growth is sensitive to growing season
weather variation and climate change. In this work, we de-
velop a deep learning-based solution, namely Multi-Modal
Spatial-Temporal Vision Transformer (MMST-ViT), for pre-
dicting crop yields at the county level across the United
States, by considering the effects of short-term meteoro-
logical variations during the growing season and the long-
term climate change on crops. Specifically, our MMST-ViT
consists of a Multi-Modal Transformer, a Spatial Trans-
former, and a Temporal Transformer. The Multi-Modal
Transformer leverages both visual remote sensing data and
short-term meteorological data for modeling the effect of
growing season weather variations on crop growth. The
Spatial Transformer learns the high-resolution spatial de-
pendency among counties for accurate agricultural track-
ing. The Temporal Transformer captures the long-range
temporal dependency for learning the impact of long-term
climate change on crops. Meanwhile, we also devise a novel
multi-modal contrastive learning technique to pre-train our
model without extensive human supervision. Hence, our
MMST-ViT captures the impacts of both short-term weather
variations and long-term climate change on crops by lever-
aging both satellite images and meteorological data. We
have conducted extensive experiments on over 200 counties
in the United States, with the experimental results exhibit-
ing that our MMST-ViT outperforms its counterparts under
three performance metrics of interest. Our dataset and code
are available at https://github.com/fudong03/
MMST-ViT.

*Corresponding author: Dr. Xu Yuan (xyuan@udel.edu)

1. Introduction

Accurate crop yield prediction is essential for agricul-
tural planning and advisory processes [26], informed eco-
nomic decisions [2], and global food security [36]. How-
ever, predicting crop yields precisely is challenging as it
requires to consider the effects of i) short-term weather
variations, governed by the meteorological data during the
growing season, and ii) long-term climate change, governed
by historical meteorological factors, on crops simultane-
ously. Meanwhile, precise crop tracking relies on high-
resolution remote sensing data. While process-based pre-
diction approaches [44, 11, 25, 54] exist, they often suf-
fer from high inaccuracies due to their strong assump-
tions on management practices [15]. On the other hand,
motivated by the recent success of deep neural networks
[29, 19, 50, 12, 20, 56, 37, 32, 18, 30, 8], deep learning
(DL)-based methods have been widely adopted for crop
yield predictions, due to their effectiveness in accurate agri-
cultural tracking [27, 26] and their potent capabilities in
capturing the spatial and temporal variation of meteorolog-
ical data [28, 15].

So far, DL-based solutions for crop yield predictions can
be roughly grouped into two categories, i.e., remote sens-
ing data-based and meteorological data-based approaches.
The former [27, 26, 53, 13, 17, 47, 10] employs such re-
mote sensing data as satellite images, unmanned aerial ve-
hicle (UAV)-based imagery data, or vegetation indices to es-
timate the annual crop yield, while the latter [16, 1, 36, 42,
48] predicts the crop yield by using meteorological param-
eter data, including temperature, precipitation, vapor pres-
sure deficit, etc. However, the former overlooks the direct
impact of meteorological parameters on crop growth, while
the latter lacks high-resolution remote sensing data for ac-
curate agricultural tracking.

A recent study [39] has reported that the long-term
climate change would gradually decrease the crop yield.
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Driven by this discovery, follow-up pursuits have attempted
to explore the effect of long-term climate change on crops.
For example, the CNN-RNN model [28] demonstrates that
the crop yield prediction can benefit from historical mete-
orological data, which is essential for measuring the im-
pacts of climate change. Later, GNN-RNN [15] extends
CNN-RNN by framing the crop yield prediction as the
Spatial-Temporal forecasting problem. It employs Graph
Neural Networks (GNN) and Long Short-Term Mem-
ory (LSTM) [22] respectively for learning spatial depen-
dency among neighborhood counties and for capturing the
impact of long-term meteorological data on crops. How-
ever, both of them only take into account the meteorological
data for predictions, failing to leverage the remote sensing
data for accurate agricultural tracking.

In this work, we aim to develop a new DL-based solu-
tion for predicting crop yields at the county level across
the United States, by using both visual remote sensing
data (from the Sentinel-2 satellite imagery [41]) and nu-
merical meteorological data (from the HRRR model [24]).
Our solution has two main goals. First, it captures the
impacts of both short-term growing season weather varia-
tions and long-term climate change on crops. Second, it
aims to leverage high-resolution remote sensing data for
accurate agricultural tracking. To achieve our goals, we
propose the Multi-Modal Spatial-Temporal Vision Trans-
former (MMST-ViT), motivated by the recent success of Vi-
sion Transformers (ViT) [12]. To the best of our knowledge,
MMST-ViT is the first ViT-based model for real-world
crop yield prediction. It advances previous CNN/GNN-
based and RNN-based counterparts respectively with bet-
ter generalization to the multi-model data and with more
powerful abilities in capturing long-term temporal depen-
dency. Its three components of a Multi-Modal Transformer,
a Spatial Transformer, and a Temporal Transformer are
each equipped with one novel Multi-Head Attention (MHA)
mechanism [50]. Specifically, the Multi-Modal Trans-
former leverages satellite images and meteorological data
during the growing season for capturing the direct impact
of short-term weather variations on crop growth. The Spa-
tial Transformer learns high-resolution spatial dependency
among counties for precise crop tracking. The Tempo-
ral Transformer captures the effects of long-term climate
change on crops. Since ViT-based models are prone to
overfitting [12], we also develop a novel multi-modal con-
trastive learning technique that pre-trains our Multi-Modal
Transformer without requiring human supervision. We have
conducted experiments on over 200 counties in the United
States. The experimental results exhibit that our MMST-
ViT outperforms its state-of-the-art counterparts under three
performance metrics of interest. For example, on the soy-
bean prediction, our MMST-ViT achieves the lowest Root
Mean Square Error (RMSE) value of 3.9, the highest R-

squared (R2) value of 0.843, and the best Pearson Correla-
tion Coefficient (Corr) value of 0.918.

2. Related Work

Vision Transformers. Adopted from Transformers [50]
in natural language processing, Vision Transformers (ViT)
have exhibited commendable performance in various com-
puter vision tasks. The original ViT [12] first partitions
an image into a set of image patches, then applies Multi-
Head Attention (MHA) [50] over the patches, and fi-
nally utilizes a learnable classification token to capture
global visual representation for image classification. Sev-
eral subsequent methods have been developed, including
DeiT [46] for data-efficient ViT through knowledge dis-
tillation, Swin [33] for computation-efficient ViT using
shifted windows, PVT [51] for dense prediction tasks,
and MAE [18] for self-supervised learning, among oth-
ers [7, 21, 14, 55, 3, 52, 31, 45]. However, applying prior
ViT approaches to real-world crop yield prediction is chal-
lenging due to its needs of addressing the multi-modal in-
puts, of learning high-resolution spatial dependency, and
of capturing long-range temporal dependency. Our work,
based on ViT, advances existing methods by proposing three
novel Multi-Head Attention (MHA) mechanisms respec-
tively for leveraging both visual remote sensing data and nu-
merical meteorological data, learning global spatial repre-
sentation from multiple high-resolution data, and capturing
the global temporal representation for measuring the long-
term climate change effect. Additionally, we develop a new
multi-modal contrastive learning technique to pre-train our
multi-modal model for better prediction performance.

Deep Learning (DL) for Crop Yield Prediction. DL has
been widely adopted for real-world crop yield predictions.
Such prediction studies can be grouped into two categories:
remote sensing data-based and meteorological data-based
approaches. The former uses satellite images, unmanned
aerial vehicle (UAV) data, or vegetation indices to estimate
crop yields. Its prominent studies include the use of UAV-
acquired RGB images [27] for predicting in-season crop
yields, YieldNet [26] which resorts to transfer learning for
simultaneously estimating the yields of multiple crop types,
among many others [53, 13, 17, 47, 10]. By contrast, the
latter utilizes deep neural networks (DNNs) to capture the
impact of meteorological parameters on crop yields, includ-
ing CNN-RNN [28] which incorporates long-term meteoro-
logical data, GNN-RNN [15] which extends CNN-RNN by
using Graph Neural Networks (GNN) for learning spatial
information, and others [16, 1, 36, 42, 48]. However, the
remote sensing data-based solutions overlook the impact of
meteorological parameters on crops, while the meteorologi-
cal data-based solutions often fail to incorporate the remote
sensing data, known to be crucial for accurate agricultural

5775



Table 1: Overview of USDA Crop Dataset and HRRR Com-
puted Dataset

Dataset Parameters

USDA Production, Yield

HRRR
Averaged Temperature, Maximal Temperature, Minimal Temperature,

Precipitation, Relative Humidity, Wind Gust, Wind Speed,
Downward Shortwave Radiation Flux, Vapor Pressure Deficit

tracking. Our work differs from prior studies in two as-
pects. First, it leverages both remote sensing data and mete-
orological data for capturing the impacts of both short-term
growing season meteorological variations and the long-term
climate change on crops. Second, it is the first to use Vision
Transformers for crop yield predictions, advancing previ-
ous CNN/GNN- and RNN-based models respectively with
better generalization to multi-modal data and with higher
abilities for capturing long ranges of temporal dependency.

3. Datasets
In this study, we utilize three types of data for accurate

county-level crop yield predictions: i) crop data from the
United States Department of Agriculture (USDA), ii) me-
teorological data from the High-Resolution Rapid Refresh
(HRRR), and iii) remote sensing data from the Sentinel-2
satellite, as outlined below.

USDA Crop Dataset. The dataset, sourced from the
United States Department of Agriculture (USDA) [49],
provides annual crop data for major crops grown in the
United States (U.S.), including corn, cotton, soybean, win-
ter wheat, etc., on a county-level basis. It covers crop infor-
mation such as production and yield from 2017 to 2022 (as
listed in the second row of Table 1).

HRRR Computed Dataset. The dataset, obtained from
the High-Resolution Rapid Refresh atmospheric model
(HRRR) [24], provides high-resolution meteorological data
for the contiguous U.S. continent. It covers 9 weather pa-
rameters from 2017 to 2022 (see the third row in Table 1 for
more information).

Sentinel-2 Imagery. Sentinel-2 imagery is a set of images
captured by the Sentinel-2 Earth observation satellite. It
provides agriculture imagery for the contiguous U.S. conti-
nent from 2017 to 2022 with a 2-week interval. Since pre-
cise agricultural tracking requires high-resolution remote
sensing data, the image of a county is partitioned into mul-
tiple fine-grained grids (9×9 km). Figure 1 shows an exam-
ple of county partitioning.

4. Method
In this work, we aim to develop a deep learning (DL)-

based model for predicting crop yields at the county level.
Our goals are twofold. First, we plan to capture the mete-

Grid
County

(a) Grid Example (b) Sentinel-2 Imagery

Figure 1: Illustration of partitioning a county into multiple
grids at the 9km high-resolution. (a) An example of county
partitioning, with the red line segments indicating the geom-
etry boundary for the county and the blue line segments rep-
resenting the high-resolution grids. (b) The resulting satel-
lite images in the Sentinel-2 Imagery, with each composed
of 384×384 pixels, depicting an area of 9×9 km.

orological effect, including growing season weather varia-
tions and climate change, on crop yields. Second, we aim
to leverage high-resolution satellite images for precise agri-
cultural tracking. The aforementioned three data sources
are utilized for achieving our goals.

4.1. Problem Statement

We consider the combination of four types of data
(x,ys,yl, z) for predicting the crop yield at each single
U.S. county. Specifically, x ∈ RT×G×H×W×C represents
satellite images obtained from Sentinel-2 imagery, which
capture the information of field crops on the ground. T
and G indicate the numbers of temporal and spatial data,
respectively, whereas H , W , and C are the height, width,
and number of channels in the satellite image. ys ∈
RT×G×N1×dy and yl ∈ RT×N2×dy are meteorological pa-
rameters obtained from the HRRR dataset, representing the
short-term and the long-term historical data, respectively.
Here, N1 and N2 are the numbers of daily and monthly
HRRR data points, respectively, and dy indicates the num-
ber of weather parameters. Note that the short-term mete-
orological data is the daily HRRR data during the growing
season, while the long-term historical meteorological data
is the monthly HRRR data from the past several years (e.g.,
2018 to 2020 for predicting crop yields in 2021). z ∈ Rdz is
the ground-truth crop information obtained from the USDA
dataset, with dz representing the number of parameters for
the crop data.

4.2. Challenges

Three challenges exist upon achieving our goals, out-
lined as follows.
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Figure 2: The architecture of our proposed MMST-ViT.

Capturing the Effect of Growing Season Weather Varia-
tions on Crop Growth. Previous studies only consider the
meteorological data (or the remote sensing data) for crop
yield predictions, overlooking the direct impact of growing
season weather variations on crop growth. To capture such
an impact, we aim to leverage both visual remote sensing
and numerical meteorological data. In particular, the Multi-
Head Attention (MHA) technique [50] is adopted to capture
the meteorological effects on crop growth. However, how to
perform multi-modal attention over visual remote sensing
data and numerical meteorological data remains open.
Lacking a Mechanism for Pre-training Multi-Modal
Model. Deep neural networks (DNNs), especially Vi-
sion Transformer (ViT)-based models, are prone to over-
fitting, requiring appropriate pre-training to achieve sat-
isfactory performance. Unfortunately, conventional pre-
training techniques (e.g., SimCLR [9]) only marginally im-
prove crop yield prediction performance as they consider
the visual data only, ineffective for pre-training multi-modal
models. How to pre-train the multi-modal model for sat-
isfactory crop yield predictions is challenging to be ad-
dressed.
Capturing the Impact of Climate Change on Crops. As
reported by a prior study [39], the long-term climate change
in the atmosphere would gradually decrease the crop yield
on the ground. Some studies [28, 15] have demonstrated
that taking the climate change effect into account can bet-
ter crop yield prediction. But their designs overlook the
remote sensing data, viewed as essential for precise agricul-
tural tracking. So far, how to develop effective ways to cap-
ture the impact of long-term climate change on crop yields

is challenging and unanswered yet.

4.3. Our Proposed Approach

To tackle the aforementioned challenges, we de-
velop the Multi-Modal Spatial-Temporal Vision
Transformer (MMST-ViT) for predicting crop yields
at the county level, by leveraging the remote sensing data
and the short-term and long-term meteorological data.
Model Overview. Our proposed MMST-ViT consists of
three key components, i.e., Multi-Modal Transformer, Spa-
tial Transformer, and Temporal Transformer, as shown in
Figure 2. The Multi-Modal Transformer is designed to cap-
ture the impact of short-term meteorological variations on
crop growth, by leveraging the satellite images (i.e., x) and
the short-term meteorological parameters (i.e., ys). The
Spatial Transformer then utilizes the output of the Multi-
Modal Transformer for learning the global spatial informa-
tion of a county. Next, the Temporal Transformer combines
the outputs of our Spatial Transformer and the long-term
meteorological data (i.e., yl) to capture both global tempo-
ral information and the impact of long-term climate change
on crop yields. Finally, the output of our Temporal Trans-
former is used by a linear classifier for predicting the annual
crop yields. The details of each component are provided be-
low.
Multi-Modal Transformer. Aiming to capture the direct
impact of atmospheric weather variations on crop growth,
the Multi-Modal Transformer consists of a visual back-
bone network and a multi-modal attention layer. The for-
mer extracts high-quality visual representations from satel-
lite images for accurate agricultural tracking, while the lat-
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ter captures the relationship between the visual representa-
tion and meteorological parameters, to understand the im-
pact of meteorological parameters on crop growth. Let
fθ: (RT×G×H×W×C , RT×G×N1×dy ) → RT×G×d be our
Multi-Modal Transformer, with θ denoting the parameters
for DNNs and d representing the dimension for hidden vec-
tors. Notably, all the hidden dimensions in this paper are set
to the same size of d. As such, the proposed Multi-Modal
Transformer can be expressed as fθ(x,ys) = vm, where x
and ys are the Sentinel-2 images and the short-term meteo-
rological data, respectively. vm ∈ RT×G×d is the output of
our Multi-Modal Transformer.

In this work, we utilize Pyramid Vision Trans-
former (PVT) [51] as the visual backbone network since
it advances ResNet [19] and vanilla ViT [12] respectively
by having the global receptive field and by enabling high-
resolution feature maps. To capture the direct impact of
meteorological parameters on crop growth during the grow-
ing season, a naive way is by concatenating visual and
numerical representations extracted respectively from the
Sentinel-2 images and the meteorological parameters. Un-
fortunately, our empirical results show that such a naive
way cannot achieve satisfactory performance. Inspired
by the recent success of multi-head attention mechanisms
[50, 12, 40], we devise a novel Multi-Modal Multi-Head
Attention (MM-MHA) mechanism to capture the impact of
meteorological parameters on crop growth, mathematically
expressed as

MM-MHA(Q,K,V ) = Softmax(QKT /
√
d)V ,

Q = WQ
m · φm(x), K = WK

m · πm(ys),

V = W V
m · πm(ys).

(1)

Here, φm(x) ∈ RT×G×Np×d is the visual representation
encoded by PVT, with Np indicating the number of image
patches. πm(ys) ∈ RT×G×N1×d is the meteorological pa-
rameters after the linear projection. Notably, WQ

m ,WK
m ,

and W V
m are learnable projection matrices, similar to those

in prior studies [50, 40]. To our knowledge, this is the
first attempt at developing a multi-modal multi-attention ap-
proach for leveraging both visual remote sensing data and
numerical meteorological data.

However, ViT-based models are highly sensitive to over-
fitting, calling for pre-training with millions of visual
data [12]. Meanwhile, real-world crop yield prediction usu-
ally lacks sufficient crop data for pre-training. Worse still,
capturing the impact of short-term weather conditions on
crops requires considering both the visual and the numeri-
cal data simultaneously. Although self-supervised learning
techniques [9, 5, 18] have recently been developed for pre-
training DNNs, they cannot tackle the aforementioned issue
at the same time. For example, SimCLR [9] fails to address
the multi-modal data issue.

Pyramid Vision
Transformer

Multi-Modal
Attention

Pyramid Vision
Transformer

Multi-Modal
Attention

Augmentation

Similar
Dissimilar

Figure 3: Multi-modal self-supervised learning.

Here, we propose a novel multi-modal self-supervised
learning for pre-training our Multi-Modal Transformer
without human supervision, which is inspired by SimCLR,
but having two differences. First, we utilize the PVT instead
of convolutional neural networks (CNNs) as the backbone
network since PVT advances CNNs by having a global re-
ceptive field [51]. Second, we replace the Multi-Layer Per-
ceptron (MLP) layer in SimCLR with our proposed multi-
modal self-attention layer (i.e., Eq. (1)) for simultaneously
tackling visual and numerical data. Figure 3 illustrates its
architecture. Given a satellite image xm (or xn), we per-
form the data augmentation to get its two augmented im-
ages, and then feed them to the PVT to get two sets of
visual representations. After that, we use our proposed
MM-MHA (i.e., Eq. (1)) to perform multi-modal attention
between the visual representations and the corresponding
short-term parameters ym

s (or yn
s ), arriving at two sets of

output sequences. Here, we regard two sets of output se-
quences out of a given satellite image (e.g., xm) as the pos-
itive pair. Meanwhile, two sets of output sequences from
different satellite images (e.g., xm and xn) are regarded as
the negative pair. Similar to vanilla ViT [12], the head of
output sequences (i.e., the classification token) is taken as
the output of our Multi-Modal Transformer, i.e., the hidden
vector vm. As such, our multi-modal contrastive loss is de-
fined as,

ℓ(i, j) = − log
exp(sim(vi

m,vj
m)/τ)∑

i ̸=k,k=1,...,2B exp(sim(vi
m,vk

m)/τ)
,

Lcl =
1

2B

B∑
k=1

[ℓ(k, k +B) + ℓ(k +B, k)] ,

(2)
where B = T × G. Here, vi

m and vj
m are the positive

pair, and τ is the temperature parameter. Intuitively, our
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Eq. (2) encourages two hidden vectors from the same satel-
lite image (i.e., representing the same region) to be similar,
and two hidden vectors from different satellite images (i.e.,
representing different regions) to be dissimilar. As such,
we can pre-train our Multi-Modal Transformer to capture
the impact of short-term meteorological parameters on crop
growth without labor-intensive human supervision.
Spatial Transformer. Recall that the Sentinel-2 Imagery
dataset of a county is partitioned into multiple fine-grained
grids for precise agricultural tracking. To learn spatial de-
pendency among those grids, we propose a Spatial Trans-
former gϕ : RT×G×d → RT×d, whose purpose is to cap-
ture the global spatial representations for counties. The de-
sign of our Spatial Transformer is inspired by the vanilla
ViT [12] but with a flexible number of positional embed-
dings. It is used to tackle the scenario that the number of
grids varies among counties as it depends on county sizes.
To learn global spatial information for counties, the Spa-
tial Transformer prepends a learnable classification token
vcls
m ∈ RT×1×d, arriving at

φs(vm) = [vcls
m ; v1

m; v2
m; . . . ; vG

m] +Epos, (3)

where Epos ∈ RT×(G+1)×d is the flexible positional em-
beddings. We propose a Spatial Multi-Head Attention (S-
MHA) to learn spatial dependency among grids. Mathe-
matically,

S-MHA(Q,K,V ) = Softmax(QKT /
√
d)V ,

Q = WQ
s · φs(vm), K = WK

s · φs(vm),

V = W V
s · φs(vm).

(4)

Here, WQ
s , WK

s , W V
s are three learnable matrices, similar

to those given in Eq. (1). Finally, we regard the head of out-
put sequences as global spatial representations of counties.
That is, we have gϕ(vm) = vs, with vs ∈ RT×d signifying
the hidden vector that incorporates global spatial informa-
tion.
Temporal Transformer. The Temporal Transformer pos-
sesses two goals. The first goal aims to learn temporal de-
pendency among the hidden vectors vs, i.e., the outputs
of our Spatial Transformer. The second goal is to capture
the effect of long-term climate change on crop yields. To
achieve the first goal, we add a classification token vcls

s for
learning the global temporal representation, i.e.,

φt(vs) = [vcls
s ; v1

s ; v
2
s ; . . . ; vT

s ] +Etmp, (5)

where Etmp ∈ R(T+1)×d is the temporal embedding, simi-
lar to the positional embeddings Epos expressed in Eq. (3).
The novel Temporal Multi-Head Attention (T-MHA) is also
devised to capture the impact of long-term historical meteo-
rological parameters on crop yields. Its key idea is to incor-
porate a relative meteorological bias into each head for sim-
ilarity computation, motivated by prior studies [6, 38, 33].

Mathematically, our T-MHA can be expressed by

T-MHA(Q,K,V ) = Softmax(QKT /
√
d+ πt(yl))V ,

Q = WQ
t · φt(vs), K = WK

t · φt(vs),

V = W V
t · φt(vs).

(6)
Here, yl represents the long-term meteorological parame-
ters, and πt(·) is a linear projection layer. Similarly, WQ

t ,
WK

t , W V
t are three learnable matrices. In summary, our

Temporal Transformer hψ : (RT×d, RT×N2×dy ) → Rd

can be defined as hψ(vs,yl) = vt, with vt ∈ Rd being the
hidden vector that incorporates both global temporal infor-
mation and the impact of climate change on crops simulta-
neously.

Finally, the hidden vector vt is fed into a linear classifier
for crop yield predictions, i.e., ẑ = W Tvt + b, with W
and b respectively denoting the weights and the bias for the
classifier, and ẑ ∈ Rdz indicating the crop yield prediction.

5. Experiments
We conduct experiments for the county-level crop yield

predictions across four U.S. states, i.e., Mississippi (MS),
Louisiana (LA), Iowa (IA), and Illinois (IL). Four types
of crops, i.e., corn, cotton, soybean, and winter wheat, are
taken into account for performance evaluation.

5.1. Experimental Settings

Datasets. We utilize the Sentinel-2 imagery and the daily
HRRR data datasets during the growing season respectively
as the remote sensing data and the short-term meteorologi-
cal data. Meanwhile, the monthly HRRR data from the pre-
vious three years are used as the long-term meteorological
parameters.

Compared Approaches. We compare our proposed
MMST-ViT to three DL-based approaches, with one, i.e.,
ConvLSTM [43], developed for spatial-temporal predic-
tion, and the other two, i.e., CNN-RNN [28] and GNN-
RNN [15], developed for crop yield predictions. Minor
rectifications are made to them so that they can admit
the Sentinel-2 imagery and HRRR datasets as their inputs.
Other hyperparameters, unless specified otherwise, are set
to the values as those reported in their original studies.

Metrics. We take three performance metrics, i.e., Root
Mean Square Error (RMSE), R-squared (R2), and Pear-
son Correlation Coefficient (Corr), for comparative eval-
uation. Notably, a lower value of RMSE or a higher value
of R2 (or Corr) indicates better performance.

Model Size. Our proposed MMST-ViT builds on the top of
Vision Transformer (ViT) [12]. Similar to ViT, it consists of
a stack of Transformer blocks [50], where each Transformer
block includes a Multi-Head Attention (MHA) block and
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Table 2: Model details used in our study

Model Layer Hidden Size Head MLP Size Others

Multi-Modal Transformer PVT-T/4 {2, 2, 2, 2} {64, 128, 320, 512} {1, 2, 5, 8} {512, 1024, 1280, 2048} SR Ratios = {8, 4, 2, 1}
MM-MHA 2 512 8 2048 Context Size = 9

Spatial Transformer S-MHA 4 512 3 2048 -
Temporal Transformer T-MHA 4 512 3 2048 Context Size = 9

Table 3: Overall comparative crop yield predictions for 2021, with the best results shown in bold. Cotton yields are measured
in pounds per acre (LB/AC), whereas other crop yields are measured in bushels per acre (BU/AC)

Method Corn Cotton Soybean Winter Wheat

RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑)

ConvLSTM 18.6 0.611 0.782 65.4 0.715 0.846 7.2 0.616 0.785 7.4 0.511 0.715
CNN-RNN 14.6 0.705 0.839 69.5 0.653 0.808 5.8 0.703 0.839 7.5 0.614 0.783
GNN-RNN 14.2 0.730 0.854 58.5 0.647 0.804 5.4 0.748 0.865 6.0 0.621 0.788

Ours 10.5 0.811 0.900 42.4 0.790 0.889 3.9 0.843 0.918 4.6 0.785 0.886

an MLP block, and both of which incorporate the Layer-
Norm [4] for normalization. Table 2 presents the details of
model sizes used in our experiments. Note that “PVT-T/4”
refers to the PVT-Tiny model with a patch size of 4, and “SR
Ratios” represents the spatial reduction ratio in PVT. Fol-
lowing the original PVT [51], we divide the PVT backbone
into four stages and report the corresponding model sizes at
each stage in the second row of Table 2. The other trans-
formers are single-stage, similar to the vanilla ViT [12].
Notably, “Context Size” represents the number of meteo-
rological parameters used in our study.

Hyperparameters. Our model is pre-trained for 200
epochs using AdamW [35] with β1 = 0.9, β2 = 0.95,
a weight decay of 0.05, and a cosine decay schedule [34]
with an initial learning rate of 1e − 4, and warmup epochs
of 20. To perform data augmentation for pre-training, vari-
ous techniques such as random cropping, random horizon-
tal flipping, random Gaussian blur, and color jittering are
employed. These techniques are similar to those used in
SimCLR [9]. After pre-training, we fine-tune our proposed
MMST-ViT for 100 epochs using AdamW with β1 = 0.9,
β2 = 0.999, a cosine decay schedule with an initial learning
rate of 1e− 3, and warmup epochs of 5.

5.2. Comparative Performance Evaluation

We conduct experiments for predicting 2021 crop yields
at the county level across four aforementioned U.S. states,
with prediction performance measured by the three metrics
of RMSE, R2, and Corr.

Table 3 lists the comparative performance results of
our MMST-ViT and its three counterparts, i.e., ConvL-
STM, CNN-RNN, and GNN-RNN. Four observations are
obtained from the table. First, our approach achieves the
best performance under all metrics. In particular, for the
soybean yield prediction, our approach achieves the low-
est RMSE of 3.9 and the highest R2 (or Corr) of 0.843 (or
0.918). With the lowest RMSE value, our predicted soybean

yields are the closest to the actual amounts. In addition, the
highest R2 and Corr values demonstrate that our predicted
soybean yields are best correlated to actual figures. Second,
our approach significantly outperforms ConvLSTM, with
its RMSE values always lower than those of ConvLSTM
markedly, ranging from 2.8 (for winter wheat) to 23.0 (for
cotton). The reason is that ConvLSTM overlooks the im-
pact of meteorological parameters on crop growth. Third,
CNN-RNN underperforms our approach by 4.1 (for corn),
by 27.1 (for cotton), by 1.9 (for soybean), and by 2.9 (for
winter wheat), in terms of RMSE, though both models take
into account the effect of long-term climate change on crop
yields. Because CNN-RNN cannot model the spatial de-
pendency among neighborhood regions. Fourth, MMST-
ViT outperforms the most recent state-of-the-art (i.e., GNN-
RNN) measurably. Specifically, our RMSE value is lower
by 16.1 for cotton, whereas our R2 and Corr values are bet-
ter respectively by 0.165 and 0.098 for winter wheat. These
results are contributed by leveraging both visual remote
sensing and numerical meteorological data in our model,
while GNN-RNN only considers the meteorological data.

5.3. Visualizing Crop Yield Prediction Errors

In this section, we conduct experiments to visualize crop
yield prediction errors across four U.S. states: Mississippi
(MS), Louisiana (LA), Iowa (IA), and Illinois (IL). We
use the same experimental settings as those stated in Sec-
tion 5.2. Figure 4 shows the absolute prediction errors for
soybean across counties/parishes in the four states, with
navy blue and light blue respectively indicating the high and
low absolute errors. Our MMST-ViT model is highly effec-
tive in predicting crop yields, with the absolute prediction
errors of 57.2% counties below 3 BU/AC. Furthermore, we
discover that 95.1% of counties in MS, 92.5% of parishes
in LA, 86.8% of counties in IA, and 91.0% of counties in IL
achieve decent absolute prediction errors (i.e., ≤ 6 BU/AC).
These empirical findings validate the robustness of MMST-
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Figure 4: Illustration of absolute prediction errors for soybean across four U.S. states. Note that a county/parish with “< 0”
indicates its soybean yield data is unavailable.

ViT across various geographic locations.

5.4. Performance of One Year Ahead Predictions

In practice, predicting crop yields well in advance of har-
vest, can provide valuable information for farmers, agribusi-
nesses, and governments in their agricultural planning and
decision-making processes. This information can be used
to elevate agricultural resilience and sustainability, make
informed financial decisions, and support global food se-
curity [23]. A prior study [15] simulated the early predic-
tion scenario by masking partial inputs, successfully mak-
ing predictions several months before harvest. In this study,
we attempt a step further by making crop yield predictions
one year before the harvest. In particular, we leverage re-
mote sensing and short-term meteorological data during the
growing season in the current year to predict crop yields
in the next year. For example, the Sentinel-2 imagery and
daily HRRR data during the growing season in 2020 are
utilized as remote sensing data and the short-term meteoro-
logical data for predicting crop yields in 2021.

Figure 5 illustrates the experimental results. It is ob-
served that our MMST-ViT outperforms three baseline
models, i.e., ConvLSTM, CNN-RNN, and GNN-RNN, for
the predictions of one year ahead. Among all crops, MMST-
ViT achieves the lowest RMSE values ranging from 4.7 (for
soybean) to 50.2 (for cotton), the highest R2 values rang-
ing from 0.711 (for winter wheat) to 0.792 (for soybean),
and the highest Corr values ranging from 0.843 (for winter
wheat) to 0.890 (for soybean). Additionally, compared to its
in-season prediction results (see the 6th row of Table 3), the
one year ahead prediction outcomes of our approach are just
slightly inferior, degraded respectively by 8.6%, of 15.5%,
of 17.0%, and of 14.6% in terms of RMSE for corn, cotton,
soybean, and winter wheat. The empirical results confirm
the robustness of MMST-ViT.

Interestingly, we also observe that the prediction results
for the cotton have a high RMSE value but not a low R2 (or
Corr) value. This is because the cotton yield is measured
by pounds per acre (LB/AC), with a high standard devia-
tion value of 250.1, while other crop yields are measured by
bushels per acre (BU/AC), with low standard deviation val-

Table 4: Ablation studies for different components, with
five scenarios considered and the last row listing the results
of MMST-ViT

Component Corn Soybean

RMSE (↓) Corr (↑) RMSE (↓) Corr (↑)

Temporal
Transformer

w/o long-term 14.5 0.843 6.2 0.850
w/o T-MHA 15.7 0.820 5.6 0.839

Spatial
Transformer w/o S-MHA 13.5 0.856 5.6 0.849

Multi-Modal
Transformer

w/o short-term 13.6 0.839 6.1 0.845
w/o image 15.2 0.809 6.8 0.822

MMST-ViT - 10.5 0.900 3.9 0.918

ues (e.g., 11.8 for soybean). In scenarios with high variance
data, the RMSE value may worsen due to larger residuals,
while the R2 value improves due to the increased proportion
of explained variance.

5.5. Ablation Studies

Key Components. We next conduct experiments to show
how each key component in our MMST-ViT affects predic-
tion performance. Table 4 lists the results of our ablation
studies under five different scenarios, with one shown in
a row. Here, “w/o long-term” indicates masking the long-
term meteorological data, and “w/o T-MHA” represents the
absence of our Temporal Transformer and instead resort-
ing to the average pooling to obtain the global temporal
representation. Similarly, “w/o S-MHA” denotes utilizing
the average pooling to obtain the global spatial representa-
tion. The scenarios of “w/o short-term” and “w/o image”
represent respectively masking the short-term meteorologi-
cal data and the remote sensing data from the Multi-Modal
Transformer. Note that masking either data makes our
model unable to conduct MM-MHA, following Eq. (1). The
results of our complete MMST-ViT outcomes are shown in
the last row of Table 4.

Three observations can be made from Table 4. First,
the long-term meteorological data degrades the Corr value
by 0.057 (or 0.068) for corn (or soybean). This validates
that crop yield prediction accuracy can benefit from histor-
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Figure 5: Illustration of the performance for predictions of one year ahead under (a) RMSE, (b) R2, and (c) Corr, with the
cotton yield measured by LB/AC and other crop yields measured by BU/AC.

ical meteorological data, which dictates long-term climate
change. Second, the absence of either the Temporal Trans-
former or the Spatial Transformer lowers the Corr value by
0.080 (for corn) and by 0.069 (for soybean), respectively.
Third, unable to conduct MM-MHA as the result of mask-
ing the short-term meteorological data or the satellite im-
ages degrades prediction performance greatly. For exam-
ple, masking the short-term meteorological data (or satel-
lite images) causes the Corr value degradation by 0.096 (or
0.073) for soybean. This statistical evidence exhibits the
importance of our Multi-Modal Transformer for capturing
the impact of meteorological parameters on crop growth.

Pre-training Techniques. We conduct experiments to
explore the impact of our proposed multi-modal self-
supervised pre-training, i.e., Eq. (2), on the crop yield pre-
diction. We consider three scenarios, i.e., MMST-ViT with-
out pre-training, with the pre-training technique described
in SimCLR [9], and with our multi-modal pre-training. Ta-
ble 5 presents the prediction performance outcomes. The
table reveals that our MMST-ViT (w/ our multi-modal pre-
training) significantly outperforms its counterpart (w/o pre-
training), exhibiting a lower RMSE value by 2.7 (or 1.2)
and a larger Corr value by 0.043 (or 0.043) for corn (or
soybean), due to two reasons. First, Vision Transformer
(ViT)-based models are prone to overfitting [12], but our
multi-modal self-supervised learning can significantly miti-
gate this issue by leveraging both visual remote sensing data
and numerical meteorological data for pre-training. Second,
our multi-modal self-supervised pre-training may can cap-
ture the impact of meteorological parameters on the crops.
In contrast, pre-training our MMST-ViT with the SimCLR
technique only achieves marginal performance improve-
ment (compared to the one w/o pre-training), achieving the
Corr improvement of 0.001 (0.875 v.s. 0.876) for soybean.
This is because the SimCLR technique fails to leverage nu-
merical meteorological parameters for pre-training. These
empirical results validate the necessity and importance of
our proposed multi-modal pre-training for accurate crop
yield predictions.

Table 5: Ablation studies for different pre-training tech-
niques, with three scenarios considered

Method Corn Soybean

RMSE (↓) Corr (↑) RMSE (↓) Corr (↑)

w/o pretraining 13.2 0.857 5.1 0.875
w/ SimCLR 12.9 0.857 4.9 0.876

w/ multi-modal pretraining 10.5 0.900 3.9 0.918

6. Conclusion

This paper has proposed the Multi-Modal Spatial-
Temporal Vision Transformer (MMST-ViT), a climate
change-aware deep learning approach for predicting crop
yields at the county level across the United States. MMST-
ViT comprises three key components of a Multi-Modal
Transformer, a Spatial Transformer, and a Temporal Trans-
former. Three innovative Multi-Head Attention (MHA)
mechanisms are introduced, one for each component. As
a result, our MMST-ViT can leverage both the visual re-
mote sensing data and the numerical meteorological data for
capturing the impact of short-term growing season weather
variations and long-term climate change on crop yields. Ad-
ditionally, a novel multi-modal contrastive learning tech-
nique has been developed, able to effectively pre-train our
model without the need of human supervision. We have
conducted extensive experiments on 200+ counties/parishes
located in 4 U.S. states, with the results demonstrating
that our proposed MMST-ViT substantially outperforms its
state-of-the-art counterparts consistently under three perfor-
mance metrics of interest.
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