
FedClust: Tackling Data Heterogeneity in Federated Learning
through Weight-Driven Client Clustering

Md Sirajul Islam
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA, USA
md-sirajul.islam1@louisiana.edu

Simin Javaherian
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA, USA
simin.javaherian1@louisiana.edu

Fei Xu
School of Computer Science and

Technology
East China Normal University

Shanghai, China
fxu@cs.ecnu.edu.cn

Xu Yuan
Department of Computer and

Information Sciences
University of Delaware

Newark, DE, USA
xyuan@udel.edu

Li Chen
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA, USA
li.chen@louisiana.edu

Nian-Feng Tzeng
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA, USA
nianfeng.tzeng@louisiana.edu

ABSTRACT
Federated learning (FL) is an emerging distributed machine learning
paradigm that enables collaborative training of machine learning
models over decentralized devices without exposing their local data.
One of the major challenges in FL is the presence of uneven data
distributions across client devices, violating the well-known as-
sumption of independent-and-identically-distributed (IID) training
samples in conventional machine learning. To address the per-
formance degradation issue incurred by such data heterogeneity,
clustered federated learning (CFL) shows its promise by grouping
clients into separate learning clusters based on the similarity of their
local data distributions. However, state-of-the-art CFL approaches
require a large number of communication rounds to learn the dis-
tribution similarities during training until the formation of clusters
is stabilized. Moreover, some of these algorithms heavily rely on
a predefined number of clusters, thus limiting their flexibility and
adaptability. In this paper, we propose FedClust, a novel approach
for CFL that leverages the correlation between local model weights
and the data distribution of clients. FedClust groups clients into
clusters in a one-shot manner by measuring the similarity degrees
among clients based on the strategically selected partial weights of
locally trained models. We conduct extensive experiments on four
benchmark datasets with different non-IID data settings. Experi-
mental results demonstrate that FedClust achieves higher model
accuracy up to ∼45% as well as faster convergence with a signif-
icantly reduced communication cost up to 2.7× compared to its
state-of-the-art counterparts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1793-2/24/08.
https://doi.org/10.1145/3673038.3673151

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Modeling and simulation.

KEYWORDS
Federated Learning, Clustered Federated Learning, Non-IID Data

ACM Reference Format:
Md Sirajul Islam, Simin Javaherian, Fei Xu, Xu Yuan, Li Chen, and Nian-
Feng Tzeng. 2024. FedClust: Tackling Data Heterogeneity in Federated
Learning throughWeight-Driven Client Clustering. In The 53rd International
Conference on Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland,
Sweden. ACM, Gotland, Sweden, 10 pages. https://doi.org/10.1145/3673038.
3673151

1 INTRODUCTION
With the proliferation of Internet-of-Things (IoT) and the wide-
spread adoption of artificial intelligence across various application
domains, machine learning has been increasingly shifted toward the
network edge, where computations are performed on edge devices
rather than in centralized data centers [14, 28]. Such a computing
paradigm shift is enabled by the rapid development of the compu-
tation and storage capacity on edge devices, able to handle more
complex and data-intensive tasks. To analyze and process massive
data generated by various edge devices (e.g., mobile phones, wear-
able devices, and autonomous vehicles), the traditional machine
learning approach falls short. It requires transmitting large volumes
of user data to centralized cloud servers, incurring prohibitive com-
munication costs and raising privacy concerns as well.

Federated learning (FL) has become a promising solution, al-
lowing for participating devices to collaboratively train a globally
shared model under the coordination of a central server, without
exposing their local data. Due to its superior privacy-preservation
implications, FL has been widely adopted by numerous companies
(such as Google [9]) in a variety of applications, including computer
vision [24], natural language processing [23], and human activity
recognition [31, 38]. Essentially, FL is a distributed machine learn-
ing framework, with training data resident on decentralized client

https://doi.org/10.1145/3673038.3673151
https://doi.org/10.1145/3673038.3673151
https://doi.org/10.1145/3673038.3673151

ICPP ’24, August 12–15, 2024, Gotland, Sweden Sirajul and Li, et al.

devices. In classical FL training [15, 21, 28], the server broadcasts
the current global model to the participating clients. Each client
trains the model using its local data and sends its local updates to
the server. The server then aggregates model updates from partici-
pating clients to update the global model, to be trained in the next
round. These steps repeat until achieving a certain level of model
accuracy or a pre-specified number of communication rounds.

However, deploying FL often involves a number of devices that
generate heterogeneous data due to their varying use styles. For
instance, different users may watch videos on diverse types of
content (e.g., news, sports, and entertainment) and run their smart-
phones in varying frequencies. The presence of heterogeneous
data across client devices breaks the conventional assumption of
independent-and-identically-distributed (IID) training data, raising
the new challenge of non-IID data distribution in the FL paradigm.
Such data heterogeneity not only increases the overall communi-
cation cost but also degrades global model performance [22, 44],
increasingly drawing research attention to mitigate the adverse
impact of non-IID data on FL [2, 4, 6, 14, 31, 34].

Instead of learning a single global model, an alternative approach
focuses on attaining personalized models for individual users to
arrive at personalized FL, motivated by the observation that the
globally learned model may exhibit lower accuracy on a participat-
ing device than a local model independently trained on its own data
[8]. More specifically, in addition to obtaining a collaboratively-
trained global model, each client learns its personalized local model
with various techniques such as regularization, local fine-tuning,
model interpolation, multi-task learning, and knowledge distilla-
tion [5, 13, 20, 22, 26, 27, 36, 37]. Nevertheless, apart from a lack
of generalization by its nature, personalized FL suffers from lim-
ited scalability, due to the extra computation overhead for learning
a personalized model on each participant device. Additionally, it
often fails to learn effectively on limited participant-specific data,
unable to accurately capture local data distributions.

Recently, clustered federated learning (CFL) [6, 11, 31, 34] has
gained significant attention as a promising solution for tackling
data heterogeneity. CFL frameworks group clients into multiple
clusters based on the similarity of their data distributions and train
a separate model for each cluster to alleviate the adverse effect
of non-IID data. Most of the existing CFL approaches indirectly
measure the data distribution similarity among clients by utilizing
their local model updates or the gradients (e.g., [34]). Despite the
promise of CFL, it remains an open challenge for clustering clients
optimally. Existing efforts [6, 31, 38] rely on a predefined cluster
count, which is difficult to determine optimally without any prior
knowledge about data distributions or learning tasks among the
clients. Under the assumption that the server holds a portion of
globally shared data, Morafah et al. [29] proposed to cluster clients
based on the similarity of the inferences on the shared data using
updated local models from clients. Such a data availability assump-
tion on the server may not be practical in reality. Sattler et al. [34]
proposed to iteratively bi-partition clients into clusters based on
the cosine similarity among their local model updates. This ap-
proach is communication-inefficient as it requires a large number
of communication rounds to form stabilized clusters. Moreover,
state-of-the-art CFL methods hardly allow the flexibility of balanc-
ing generalization and personalization.

To address the aforementioned limitations, we propose a novel
clustered federated learning method, named FedClust, which ef-
ficiently groups clients with non-IID data into suitable clusters.
The design of FedClust leverages our insight into the implicit re-
lationship between the local model weights and the underlying
data distribution on a client device. In particular, FedClust utilizes
locally-trained model weights on a client, obtained by performing
a few local training iterations on its own data. To measure the simi-
larity among clients, FedClust requires each client to send only the
strategically selected partial weights to the server, further reducing
the amount of data transmission. After receiving weights from all
the clients, FedClust constructs a proximity matrix based on the
Euclidean distance to efficiently identify distribution similarities
among clients. An agglomerative hierarchical clustering (bottom-
up approach) [3] on the proximity matrix is employed to classify
similar clients into an optimal number of clusters. Remarkably, Fed-
Clust operates without the need for any proxy data on the server,
as opposed to all the existing solutions [7, 29]. Furthermore, in
contrast to its state-of-the-art counterparts [2, 6, 34] which fail to
accommodate client dynamics, FedClust provides an elegant mech-
anism for effectively incorporating new clients into appropriate
clusters on-the-fly.

Finally, we have conducted extensive experiments to evaluate
the performance of FedClust on four benchmark image classifica-
tion datasets under different non-IID data settings, with our state-
of-the-art counterparts following the LeNet-5 [18] and ResNet-9
[10] architectures. The experimental results demonstrate that the
proposed approach significantly improves overall model accuracy,
surpassing both global and personalized baselines by up to ∼45%
and ∼18%, respectively. Moreover, FedClust enables faster conver-
gence due to great reduction in communication costs by 1.2 - 2.7×
when compared to state-of-the-art FL methods.

Our key contributions are summarized as follows:

• We analyze the relationship of model weights with the un-
derlying data distribution of clients. Moreover, we observe
the implicit connection of different layer weights with the
local data distributions.
• We propose a novel clustered federated learning framework
named FedClust to alleviate the adverse impact of non-IID
data on FL. Our framework utilizes the similarity among
strategically selected partial weights of locally-trained mod-
els from participant devices, to optimally form clusters for
efficient and effective learning. In addition, we present an
elegant strategy to accommodate client dynamics, incorpo-
rating newcomers into appropriate clusters in real time.
• We conduct extensive experiments under diverse represen-
tative settings to evaluate FedClust with a variety of perfor-
mance metrics. Experimental results demonstrate the advan-
tages of FedClust over the state-of-the-art baselines, espe-
cially in improving overall model accuracy and communica-
tion efficiency.

The remainder of this paper is organized as follows. Section 2
describes related work. The background and motivation of this
work are introduced in Section 3. In Section 4, we present a brief
explanation on the design of our proposed FedClust framework.
In Section 5, we evaluate FedClust and compare its performance

FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering ICPP ’24, August 12–15, 2024, Gotland, Sweden

results with those of state-of-the-art counterparts. Finally, Section
6 concludes the paper.

2 RELATEDWORK
In this section, we review pertinent work on addressing the non-IID
data issue in federated learning.

2.1 Federated Learning with Non-IID Data
In federated learning (FL), data stored in each user device greatly
varies due to different usage patterns and habits. Specifically, differ-
ent users may prefer to browse news on different topics e.g., sports,
politics, and technology, leading to non-IID data for different users.
In reality, it is natural that the data used for FL training are usually
non-IID. The most widely used FL algorithm FedAvg [28] fails to
achieve optimal performance in the presence of non-IID data across
clients. Several studies [21, 44] have shown that non-IID data not
only decreases the accuracy of the trained model but also slows
down training convergence with larger communication costs. To
mitigate the client drift issue caused by non-IID data, FedProx [21]
introduces a proximal term to the local training objective to keep
local models close to the global model. FedDyn [1] introduces a
dynamic regularizer for each client in every round to align the
global and the local models.

In SCAFFOLD [15], data heterogeneity is modeled as a source of
variance among clients following a variance reduction technique. It
estimates the direction of updates for the global model and that of
each client. The drift of local training is then calculated by compar-
ing two update directions. Finally, it modifies the local updates by
incorporating the drift in local training. FedNova [41] considers the
number of local training epochs performed by each client during
every round of FL to produce an unbiased global model. It normal-
izes and scales local updates based on the number of local training
epochs before updating the global model. While effective under
certain scenarios, these global FL methods cannot systematically ad-
dress the data heterogeneity issue. Several studies [12, 17] proposed
guided participant selection strategies, with a subset of clients is
selected to participate in FL training according to some predefined
criteria. These approaches provide faster model convergence and
better time-to-accuracy performance.

To mitigate the impact of non-IID data, prior approaches [5, 13,
27] focused on personalizing the global model with each client’s
local data via fine-tuning. They let the global model act as an initial
point for learning personalized models at clients based on their local
data. Nevertheless, the global model may not be a good initiator,
if the local data distributions of clients highly differ among one
another. Similarly, Smith et al. [36] extended multitask learning
in FL training to aim at learning personalized models for multiple
related tasks with the coordination of a central server. Recent work,
PGFed [26], formulated client’s local objectives as personalized
global objectives to explicitly transfer collaborative knowledge
across them.

2.2 Clustered Federated Learning
Alternatively, clustered federated learning (CFL) approaches [2, 6,
31, 34] have been proposed to efficiently alleviate the challenge
due to non-IID data among clients. They divide clients into clusters

based on their data distributions so that clients in each cluster
collaboratively train one model. Existing CFL approaches mainly
differ in the process of identifying the data distribution similarity
among clients by using model weights, gradient updates, or local
loss.

Since the server cannot access clients’ data in FL, [4, 34] proposed
to cluster clients based on the cosine similarity of their local model
updates or gradients. More specifically, FMTL [34] iteratively bi-
partitions clients into clusters. Initially, all clients train a shared
model by forming one cluster. Later, the server partitions the initial
cluster into two new clusters according to the cosine similarity
of their local model updates. The above steps repeat until no new
cluster is generated. IFCA [6] requires a predefined number of
clusters. Each client needs to download available models of all
clusters at each round and selects one that provides the highest
local test accuracy. It incurs large communication costs due to the
constant communication between the server and every client to
form clusters. Moreover, the performance of IFCA heavily depends
on the prior settings of the cluster count, which is difficult to identify
without the knowledge of client local data distributions. Both of the
above methods require large numbers of communication rounds to
form stable clusters.

Several early pursuits [2, 31] determine the number of clusters
using the distances of their local model weights. Gong et al. [7]
proposed to pre-cluster clients based on certain statistics of each
client’s local data, and then adjust initial clustering by considering
the model distance calculated among clients using partial weights.
However, sharing statistics of the client’s data with the server
compromises the privacy promise of FL. Recently, Vahidian et al.
[39] proposed PACFL, which identifies data distribution similarities
among clients by using the principal angles over the client data
subspaces. Before starting federation, it applies truncated Singular
Value Decomposition (SVD) on each client’s local data to obtain a
small set of principal vectors which represent its underlying data
distribution.

3 BACKGROUND AND MOTIVATION
3.1 Federated Learning
Federated learning (FL) is a privacy-preserving framework that
allows distributed clients to collaboratively train machine learning
or deep learning models without sharing their local data [28]. FL
usually involves a set of clients and a central server. Each clients
receives its initial global model from the server and then train it for
a few local iterations using its local data. The server is responsible
for aggregating all local model updates to update the globally shared
model. The communication between the server and every client
follows a predetermined communication protocol. The server has
no prior knowledge about the data distribution across devices as it
cannot access the raw data stored in clients.

McMahan et al. [28] first introduced a federated averaging al-
gorithm (FedAvg) that implements the idea of federated learning.
In order to optimize the communication efficiency of FL over real-
world data, the FedAvg algorithm trains a globally shared model
across clients by a weighted averaging of the local model param-
eters of clients. In particular, the goal of FedAvg is typically to

ICPP ’24, August 12–15, 2024, Gotland, Sweden Sirajul and Li, et al.

1 2 3 4 5 6 7 8 9 10
Client #

1

2

3

4

5

6

7

8

9

10

Cl
ien

t #

(a) Layer 1 (CL)

1 2 3 4 5 6 7 8 9 10
Client #

1

2

3

4

5

6

7

8

9

10
Cl

ien
t #

(b) Layer 7 (CL)

1 2 3 4 5 6 7 8 9 10
Client #

1

2

3

4

5

6

7

8

9

10

Cl
ien

t #

(c) Layer 14 (FC)

1 2 3 4 5 6 7 8 9 10
Client #

1

2

3

4

5

6

7

8

9

10

Cl
ien

t #

(d) Layer 16 (FC)

Figure 1: Illustration of the distance matrices calculated using different layer weights, where CL indicates convolutional layer
and FC indicates fully connected layer. A lighter color in the distance matrices denotes a smaller distance, i.e., the two models
are more similar.

minimize the following objective function:

min
\

𝐹 (\) Δ
=

𝑚∑︁
𝑖=1

𝑛𝑖

𝑁
𝐹𝑖 (\) (1)

Here, 𝑚 is the set of participating clients and client 𝑖 has local
dataset D𝑖 , where 𝑛𝑖 = |D𝑖 | and 𝑁 =

∑𝑚
𝑖=1 𝑛𝑖 . The local objec-

tive functions of clients can be defined as the empirical loss over
their local data D𝑖 , i.e., 𝐹𝑖 (\) = 1

𝑛𝑖

∑𝑛𝑖
𝑗𝑖=1 𝑓𝑗𝑖 (\ ;𝑥 𝑗𝑖 , 𝑦 𝑗𝑖), where 𝑛𝑖

is the number of client i’s local samples. It is empirically shown
that FedAvg provides better performance when the data distribu-
tion across clients is IID [28]. In reality, data produced by different
clients are usually non-IID in nature, thus negatively impacting
the convergence and performance of federated learning in practi-
cal applications. Recently, clustered federated learning (CFL) has
attracted research efforts to address the data heterogeneity issue
with promising performance improvement.

3.2 Motivation
Although CFL-based approaches [2, 6, 31, 34] have shown lofty
improvement over FedAvg when dealing with non-IID data, they
still lack efficiency due to their limitations of clustering strategies.
We thus identify key limitations as well as opportunities in what
follows:

• Difficult to determine the cluster count in advance.
Most of the existing CFL approaches [6, 31, 38] require a
given number of clusters apriori, usually very hard to deter-
mine without knowing the actual data distributions across
clients, despite that model accuracy is highly dependent on
the optimal number of clusters.
• Require larger communication rounds to form stable
clusters. Some existing CFL approaches [34] can group
clients into an appropriate number of clusters. Specifically,
FMTL [34] iteratively partitions clients into clusters accord-
ing to the cosine similarity of their local model updates.
While yielding an optimal number of clusters, it is not com-
munication efficient as a large number of communication
rounds are needed to form stabilized clusters.

• Is it necessary to utilize all model weights? A majority
of current CFL approaches use all model weights or model
updates to calculate model similarity which reflects the un-
derlying data distribution of clients. It imposes a huge pres-
sure on the server when calculating the similarity over a
large number of models simultaneously. In addition, existing
literature [25, 33, 43] demonstrates that there are distinc-
tions between the different layers in the same model, and
higher layers weights are more task-related compared to
lower layers weights. So, is it possible to effectively compare
model similarity using just partial weights?

To address the above limitations, we propose a new clustered feder-
ated learning approach, FedClust, that divides clients into a suitable
number of clusters in a one-shot manner by calculating the similar-
ity using selected partial weights of clients’ locally trained models.

3.3 Observation
Despite previous observations [25, 33, 43] on model layers as dis-
cussed before, there is a lack of understanding in how these varia-
tions can potentially impact federated learning. In this section, we
conduct an experimental study to investigate the implications of
model weights from different layers on the underlying data distri-
bution.

We conduct a simple experiment for a multi-class image classifi-
cation task on the CIFAR-10 [16] dataset with VGG16 [35]. Specif-
ically, the VGG16 model contains thirteen convolutional layers
and three fully connected layers. To simulate non-IID data among
clients, we assume 10 different clients and group them into two
clusters based on their local label categories, e.g., G1 = {1, 2, . . . , 5}
and G2 = {6, 7, . . . , 10}. Fig. 1 illustrates four different distance ma-
trices which are calculated using the weights of the four different
layers (1, 7, 14, and 16) in VGG16.

From Fig. 1, we observe that the final layer weights implicitly
represent the underlying data distribution of clients. Specifically,
Figs. 1(a) and 1(b) depict the distance matrices based on the two
convolutional layer weights respectively. However, we cannot ob-
tain the cluster structures of the clients from them. The clustering
structures of the clients are clearly observed in Figs. 1(d). Moreover,

FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering ICPP ’24, August 12–15, 2024, Gotland, Sweden

New Client

①

②

③

Local Training

④

Partial Weights

Global Model

Hierarchical Clustering
Calculate Distance Matrix

⑤ ①

②

③

④
⑤

Construct

⑥ Incorporate Newcomer
⑥

Figure 2: An overview of FedClust.

we observed similar clustering patterns using the LeNet-5 model.
Based on the above experiments and previous studies [25, 33, 43],
we can conclude that the final layer or the layer with the classifier
function reflects the model difference caused by non-IID data. In
addition, clients with similar data distributions tend to train the
model in a similar manner, resulting in closer distances among final
layer’r weights.

3.4 Overview
To advance existing CFL pursuits, we propose FedClust which can
identify cluster patterns among clients based on the distance of
weights from the final layers of their local models. The proposed
method, as described in Algorithm 1, is able to alleviate the ef-
fects of non-IID data on practical FL applications. We first focus on
clustering clients based on their local data distributions in a feder-
ated network. The proposed approach is one-shot clustering that
classifies m clients into n clusters, i.e., G = {𝑔1, . . . , 𝑔𝑛}, based on
the similarity of their underlying data distributions before starting
federation. FedClust trains one model individually for each cluster
𝑔𝑘 , instead of training a common global model for all clients. The
objective function for the clients of each cluster 𝑔𝑘 is defined as
follows:

min
\

𝐹 (\𝑔𝑘)
Δ
=

∑︁
𝑐𝑖 ∈𝑔𝑘

𝑛𝑐𝑖

𝑁𝑔𝑘

𝐹𝑖𝑘 (\𝑔𝑘) (2)

Here, 𝑛𝑐𝑖 and 𝑁𝑔𝑘 denotes the number of data samples for client 𝑐𝑖
and cluster 𝑔𝑘 , respectively, and 𝐹𝑖𝑘 (\𝑔𝑘) determines the empirical
loss on 𝑐𝑖 ’s local dataset D𝑖 .

An overview of the proposed framework is depicted in Fig. 2. To
minimize computation overhead, our clustering strategy employs
a static approach that avoids rescheduling clients in each round.
First, the server broadcasts the initial global model to all available
clients. Then, each client trains the model on its local data for a
few local iterations and sends back the updated final layer weights
to the server as the representation of their underlying data distri-
bution. The server then computes the proximity matrix between

models based on the final layer weights uploaded by each client.
Finally, the server employs agglomerative hierarchical clustering
(HC) [3] on the proximity matrixM to group clients with simi-
lar data distribution into the same cluster. The basic idea is that,
initially considering each client as a separate cluster, it repeatedly
performs the following operations in each iteration: (1) identify the
two clusters that exhibit the closest similarity, and (2) combine the
two most similar clusters. To determine which clusters should be
merged, a linkage criterion (e.g. single, average, complete, etc.) is
defined [3]. For instance, the smallest distance between two points
in each cluster in “single linkage" is defined as the pairwise Eu-
clidean distance between two clusters. In this paper, we denote _
as the clustering threshold, representing the distance between two
clusters. The iterative process continues until a suitable number of
clusters have been formed. The above clustering process is done in
one communication round.

From the next round, the workflow of FedClust is similar to
FedAvg [28]. The server initializes all cluster models with \0𝑠 . A
subset of available clients is selected randomly by the server and the
server broadcasts \0𝑠 to selected clients. Each client trains the model
on its local data and performs a few steps of stochastic gradient
descent (SGD) updates. The clients send back their updated model
parameters along with their cluster IDs to the server. The server
conducts model averaging for each cluster after receiving model
updates from all clients.

4 METHODOLOGY
4.1 Selection of Model Weights
FedClust utilizes only the final layer weights instead of the full
model weights to group clients into clusters. We have observed
empirically that there exists an implicit relationship between the
local data distribution of clients with the model weights trained
on their dataset, consistent with the findings in [40]. Therefore,

ICPP ’24, August 12–15, 2024, Gotland, Sweden Sirajul and Li, et al.

Algorithm 1: FedClust
Input: Number of available clients 𝑁 , number of

communication rounds 𝑇 , clustering threshold _,
sampling rate 𝑅 ∈ (0, 1]

Init: Server model initialization with \0𝑠
1 for each round i = 0, 1, 2,... do
2 if i = 0 then
3 Server broadcast \0𝑠 to all available clients.
4 Each client performs local update and sends back

the updated weights of the last layer to the server.
5 M ← server constructsM based on Eq. 3
6 {𝐶1, . . . ,𝐶𝑚} = 𝐻𝐶 (M, _) // employing

hierarchical clustering to obtain the
clusters

7 \0𝑠,𝑚 ← \0𝑠 // clusters model initialization

with \0𝑠
8 else
9 𝑛 ←𝑚𝑎𝑥 (𝑅 × 𝑁, 1)

10 S𝑖 ← {𝑘1, ..., 𝑘𝑛} random set of n clients
11 for each client 𝑘 ∈ S𝑖 in parallel do
12 Client 𝑘 sends its cluster ID to the server and

receives the corresponding cluster model from the
server \𝑖𝑠,𝑚

13 \𝑖+1
𝑘,𝑚
← ClientUpdate (k;\𝑖𝑠,𝑚) // local SGD

training

14 \𝑖+1𝑠,𝑚 =
∑
𝑘∈𝐶𝑚

|𝐷𝑘 |\𝑖+1𝑘,𝑚
/∑𝑘∈𝐶𝑚

|𝐷𝑘 | // each

cluster model averaging

FedClust leverages clients model weights to infer the relative char-
acteristics of the underlying data distribution. The difference in
data distribution between clients can be approximated based on the
difference in their model weights, referred to as the model distance,
after the completion of their local model training. The model dis-
tance between the model weights of any two clients 𝑐𝑝 and 𝑐𝑞 can
be calculated using 𝑙2 distance as follows:

𝑑𝑖𝑠𝑡 (𝑐𝑝 , 𝑐𝑞) =
������\̂𝑐𝑝 − \̂𝑐𝑞 ������

𝑙2
(3)

Generally, if two clients contain similar data distributions, they
tend to train models in a similar fashion compared to clients with
dissimilar data [31, 34, 40]. As a result, the distance between their
model weights will be smaller. Therefore, the model distance can be
used as a useful metric to cluster clients. The server forms a distance
matrixM of size𝑚 ×𝑚 after receiving the final layer weights of
all client’s models. Each entity of the matrixM𝑝𝑞 represents the
computed model distance 𝑑𝑖𝑠𝑡 (𝑐𝑝 , 𝑐𝑞) between clients 𝑐𝑝 and 𝑐𝑞 .
Federated learning training typically involves a large number of
client devices and the target machine learning model could be
complex with huge parameters, e.g., the VGG16 model has a total
of 138M weights [35]. Consequently, clustering methods based on
model weights would require higher computation costs, affecting
the clustering efficiency.

To enhance clustering accuracy and reduce additional compu-
tational overheads, we only select the final layer weights of the

Algorithm 2: Incorporating Newcomers
Input: New client 𝑐𝑛𝑒𝑤 , Existing clusters partial model

weights {\̂𝑔1 , . . . , \̂𝑔𝑚 }
Init: Appropriate cluster 𝑔∗ to incorporate 𝑐𝑛𝑒𝑤

1 Server sends the initial global model \0𝑠 to 𝑐𝑛𝑒𝑤
2 \𝑐𝑛𝑒𝑤 ← 𝑐𝑛𝑒𝑤 trains the model using its local data
3 \̂𝑐𝑛𝑒𝑤 ← Transmit partial model weights to the server
4 Server assigns the 𝑐𝑛𝑒𝑤 to cluster 𝑔𝑚 :
5 𝑔∗ = argmin𝑔𝑚 𝑑𝑖𝑠𝑡 (\̂𝑐𝑛𝑒𝑤 , \̂𝑔𝑚), 𝑔𝑚 ∈ G

clients local model instead of full model weights to determine the
similarity. In Fig. 1, we have empirically demonstrated that the final
layer weight of the model reflects the model difference caused by
non-IID data. Therefore, calculating the distance matrix using all
weights can lead to a bad similarity matrix thus reducing the clus-
tering accuracy. Moreover, the lower layers of the model contain
the majority portion of the weights. Specifically, in deep learning
models, especially those used for image classification tasks, e.g.,
CNN models, the purpose of convolutional layers is to identify and
extract features from the input, while the fully connected layers
focus on the final classification task. Therefore, fully connected
layer weights are more task-related. In FedClust, we thus choose
a subset of the model’s parameters, specifically the weights and
bias of the final layer, to serve as a representation of the entire
model. We utilize these weights to calculate distance matrixM. It
significantly reduces the computation cost as the size of the final
layer weights \̂𝑐𝑝 is much smaller than the full model weights \𝑐𝑝 .

4.2 Incorporating Newcomers
In reality, client devices may join in or drop out of the federated
learning process due to unreliable client communications or other
resource limitations. Clients who quit the training have no impact
on the model training of their respective clusters. However, it is
important to carefully incorporate newcomer clients into appro-
priate clusters in order to maintain the scalability of our method.
FedClust offers an elegant approach to accommodate newcomers
who join after the federation procedure to learn their personalized
model. The baseline methods except PACFL [39] did not clarify the
process of incorporating newcomer clients during federation. We
outlined the process of how FedClust integrates new participants
who joined after the end of the federation in Algorithm 2.

Clients who are not in the existing client set are referred to as
newcomers. In order to assign each new client 𝑐𝑛𝑒𝑤 into a suitable
cluster, 𝑐𝑛𝑒𝑤 is required to train the initial server model \0𝑠 on its
local data, and then sends partially selected weights to the server.
FedClust stores a copy of each cluster’s partial model weights. After
receiving the partial model weights from new client 𝑐𝑛𝑒𝑤 , the server
computes the model distances between the new client 𝑐𝑛𝑒𝑤 ’s model
and the models of existing clusters. The cluster with the minimum
model distance will be selected as the cluster for 𝑐𝑛𝑒𝑤 , represented
as follows.

𝑔∗ = argmin
𝑔𝑚

𝑑𝑖𝑠𝑡 (\̂𝑐𝑛𝑒𝑤 , \̂𝑔𝑚) , 𝑔𝑚 ∈ G (4)

FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering ICPP ’24, August 12–15, 2024, Gotland, Sweden

5 EXPERIMENTS
5.1 Experimental Setup
Datasets and Models.We evaluate the performance of FedClust
on different image classification tasks using four popular bench-
mark datasets, i.e., CIFAR-10 [16], CIFAR-100 [16], Fashion MNIST
(FMNIST) [42], and SVHN [30]. To imitate non-IID scenarios, we
consider three different data heterogeneity settings for each dataset
as in [19], i.e., Non-IID label skew (20%), Non-IID label skew (30%),
and Non-IID Dir (0.1). In our experiments, we consider LeNet-5
[18] architecture for CIFAR-10, FMNIST, and SVHN datasets and
ResNet-9 [10] architecture for CIFAR-100 dataset.

Baselines Methods. To demonstrate the performance of the
proposed method, we compare the results of FedClust against the
following state-of-the-art (SOTA) FL baselines. We consider FedAvg
[28], FedNova [41], and FedProx [21] for baselines that train a single
global model across all clients. Baselines for SOTA CFL methods
include IFCA [6], PACFL [39] and Clustered-FL (CFL) [34]. SOTA
personalized FL methods include Per-FedAvg [5] and LG-FedAvg
[23]. In addition, we compare our results with another baseline
named Local, where each client independently trains a model on
its local data without any communication with others.

Implementation. We have implemented FedClust and the base-
line methods in PyTorch [32]. We assume 100 clients are available
for all experiments and 10% of them are sampled randomly in each
communication round. We ran each experiment 3 times for 200
communication rounds. We execute all experiments on a server,
which is equipped with NVIDIA GeForce RTX 3080Ti GPU, Intel(R)
Core(TM) i9-10900X CPU, and 64G RAM. We emulate both the
server and clients on the same machine, substantiated by the fact
that the performance metrics we consider remain unaffected by the
physical location of the server and clients. The wall-clock training
time may be affected but this metric is beyond our scope of focus,
similar to our counterparts.

Hyperparameters Settings. In all of our experiments, we use
SGD as the local optimizer with the local epoch of 10, and the local
batch size of 10. We initialize the models randomly in LG-FedAvg for
a fair comparison instead of using the model produced after many
rounds of FedAvg. For IFCA and CFL, we used the same number
of clusters as mentioned in the original papers. For PACFL, we
used p = 3 in all of our experiments. The learning rate for FedAvg,
FedProx, FedNova, and CFL was set to (0.1, 0.01, 0.001), while for
other baselines, it was 0.01. Momentum was 0.9 for FedAvg, FedProx,
and FedNova, whereas for other methods, it was 0.5. In LG, the
number of local layers and global layers were set to 3 and 2. In
Per-FedAvg, we used 𝛼 = 1𝑒 − 2 and 𝛽 = 1𝑒 − 3. For CFL, the values
of 𝜖1 and 𝜖2 were 0.4 and 0.6, respectively.

Evaluation Metrics.We use the average of the final local test
accuracy over all clients and the number of communication rounds
required to reach a certain level of model accuracy as the perfor-
mance metrics. In general, it is desirable to achieve higher model
accuracy with fewer communication rounds. We also consider the
required communication costs to reach a target accuracy.

5.2 Results and Analysis
Performance comparisons. We compare FedClust with other
SOTA baseline methods under two different widely used Non-IID

Table 1: Test accuracy comparisons of different approaches
over different datasets for Non-IID label skew of 20%

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Local 79.68 ± 1.32 33.18 ± 0.41 95.68 ± 0.84 80.29 ± 1.61
FedAvg 50.27 ± 2.63 53.67 ± 0.63 77.10 ± 3.29 81.36 ± 0.64
FedProx 51.60 ± 1.40 54.28 ± 0.76 74.53 ± 2.16 79.64 ± 0.80
FedNova 47.38 ± 2.08 53.90 ± 0.38 71.33 ± 4.50 75.56 ± 3.07
LG 85.49 ± 0.87 54.15 ± 0.29 95.49 ± 0.75 91.59 ± 0.42
PerFedAvg 85.80 ± 0.58 61.29 ± 0.42 95.78 ± 1.28 92.87 ± 1.92
CFL 51.86 ± 1.31 41.28 ± 1.75 78.44 ± 2.38 73.59 ± 1.86
IFCA 87.19 ± 0.19 70.35 ± 0.28 96.83 ± 0.24 94.76 ± 0.19
PACFL 88.40 ± 0.48 71.06 ± 0.39 97.46 ± 0.13 95.48 ± 0.27
FedClust 95.82 ± 0.17 73.38 ± 0.24 97.92 ± 0.18 95.86 ± 0.11

Table 2: Test accuracy comparisons of different approaches
over different datasets for Non-IID label skew of 30%

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Local 66.51 ± 0.92 23.76 ± 0.84 92.51 ± 0.24 68.84 ± 2.86
FedAvg 57.79 ± 1.08 54.79 ± 0.56 79.90 ± 1.81 82.58 ± 0.75
FedProx 56.92 ± 1.26 53.65 ± 0.60 81.53 ± 1.48 82.91 ± 1.30
FedNova 54.15 ± 1.31 54.11 ± 0.95 78.02 ± 2.08 80.26 ± 1.49
LG 75.42 ± 0.41 36.78 ± 0.68 94.54 ± 0.48 88.07 ± 0.65
PerFedAvg 78.67 ± 0.32 57.02 ± 0.49 92.35 ± 1.70 92.10 ± 1.27
CFL 52.03 ± 2.84 35.73 ± 2.14 78.38 ± 0.42 74.02 ± 3.90
IFCA 80.21 ± 0.16 66.21 ± 0.21 95.29 ± 0.19 92.87 ± 0.14
PACFL 82.35 ± 0.27 65.91 ± 0.17 95.43 ± 0.07 93.05 ± 0.18
FedClust 83.21 ± 0.25 68.33 ± 0.19 95.70 ± 0.09 93.17 ± 0.04

settings, i.e. Non-IID label skew, and Non-IID Dirichlet label skew
[19]. We consider two different Non-IID label skew settings 20%
and 30%. In both settings, we start by randomly assigning 𝛿% of the
total available labels of a dataset to each client and then randomly
distributing the samples of each label among clients who own these
labels. In Non-IID Dirichlet label skew settings, we assign training
data to clients according to the Dirichlet distribution similar to [19].
We run each experiment three times for 200 communication rounds
with a local epoch of 10 and report the mean and standard deviation
of the average of final local test accuracy.

Table 1, 2, and 3 show the performance comparisons among all
approaches under Non-IID label skew (20%), Non-IID label skew
(30%), and Non-IID Dir (0.1) settings, respectively. The results show
that global FL baselines, i.e. FedAvg, FedProx, and FedNova pro-
vide poor performance in all scenarios due to the model drift and
weight divergence issues. Local without any communications costs
even perform better than global FL baselines. However, individual
clients may not have enough data and thus clustering could be a
promising solution. FedClust consistently demonstrates superior
performance compared to SOTA baselines on all datasets for dif-
ferent data heterogeneity settings. In particular, focusing on the
CIFAR-10 Non-IID label skew (20%) setup, FedClust outperforms all
SOTA global baseline methods (by +45.5%, +44%, +48.5% for FedAvg,
FedProx, FedNova) as well as personalized approaches (by +44%,
+10%, +10%, +8.5%, +7% for CFL, LG, PerFedAvg, IFCA, PACFL). We
tuned the hyperparameters for each baseline in order to achieve
the optimal outcome.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Sirajul and Li, et al.

0 10 20 30 40 50 60 70 80
of Communication Rounds

0

20

40

60

80

100

Fi
na

l A
cc

ur
ac

y

CIFAR-10, Non-IID (20%)

FedClust
LG
Per-FedAvg
PACFL
IFCA
CFL

0 10 20 30 40 50 60 70 80
of Communication Rounds

0

10

20

30

40

50

60

Fi
na

l A
cc

ur
ac

y

CIFAR-100, Non-IID (20%)

FedClust
LG
Per-FedAvg
PACFL
IFCA
CFL

0 10 20 30 40 50 60 70 80
of Communication Rounds

0

20

40

60

80

100

Fi
na

l A
cc

ur
ac

y

FMNIST, Non-IID (20%)

FedClust
LG
Per-FedAvg
PACFL
IFCA
CFL

0 10 20 30 40 50 60 70 80
of Communication Rounds

0

20

40

60

80

100

Fi
na

l A
cc

ur
ac

y

SVHN, Non-IID (20%)

FedClust
LG
Per-FedAvg
PACFL
IFCA
CFL

Figure 3: Test accuracy versus the number of communication rounds for Non-IID label skew of 20%. FedClust converges faster
to reach target accuracy and consistently outperforms other baselines.

Table 3: Test accuracy comparisons of different approaches
over different datasets for Non-IID Dir (0.1)

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Local 41.80 ± 2.09 17.56 ± 0.61 70.40 ± 0.86 59.06 ± 1.43
FedAvg 38.25 ± 2.98 45.26 ± 0.47 81.93 ± 0.64 61.26 ± 0.95
FedProx 42.69 ± 1.47 46.17 ± 0.83 83.32 ± 1.07 62.31 ± 1.72
FedNova 39.52 ± 1.35 46.55 ± 1.54 83.68 ± 1.61 60.53 ± 2.18
LG 48.63 ± 0.42 24.27 ± 0.33 74.39 ± 1.26 73.12 ± 0.76
PerFedAvg 52.83 ± 1.47 34.20 ± 0.29 81.18 ± 1.80 75.07 ± 1.85
CFL 41.50 ± 0.35 31.62 ± 1.76 74.01 ± 1.19 61.96 ± 1.58
IFCA 50.51 ± 0.61 46.28 ± 0.23 84.57 ± 0.41 74.57 ± 0.40
PACFL 51.02 ± 0.24 47.58 ± 0.20 85.30 ± 0.28 76.35 ± 0.46
FedClust 60.25 ± 0.58 49.65 ± 0.17 95.51 ± 0.17 78.23 ± 0.30

Communication cost. In this experiment, we compare the per-
formance of our FedClust with baseline methods where the number
of communication rounds for the federation is limited under a het-
erogeneous setting. Herein, we limit the communication round
budget to 80 rounds for all personalized baselines. We illustrate the
number of communication rounds versus the average of the final
local test accuracy across all clients for Non-IID label skew (20%) in
Fig. 3. Our proposed approach achieves convergence within only 20
communication rounds in CIFAR-10, FMNIST, and SVHN datasets.
From Fig. 3, we can see that the CFL baseline [34] shows the worst
performance on all datasets, except for CIFAR-100. Per-FedAvg expe-
riences greater advantages as the number of communication rounds
increases. It appears that PACFL and IFCA are the closest lines to
ours for all datasets, with FedClust consistently outperforming. The
reason behind this fact is that IFCA requires many rounds of feder-
ation to form stabilized clusters as it initially starts with random
cluster models which are inherently noisy.

We also demonstrate the number of communication rounds
needed for each baseline to reach a specified target accuracy in
Table 4. The “– –” entries in Table 4, and 5 indicate that the base-
line is unable to reach the desired target accuracy. As the results
show, FedClust outperforms all SOTA baseline methods. Table 5
demonstrates the required communication cost needed to reach a
target test accuracy across different datasets for Non-IID label skew
(30%). The results depict that Global baseline methods are unable to
reach the desired accuracy or require higher communication cost.
FedClust significantly reduces the communication cost to reach the
target accuracies compared to all baselines except LG (which bene-
fits from its strategy of communicating a compact representation

Table 4: Comparison of the number of communications
rounds needed for different approaches to reach target top-1
average local test accuracy over different datasets for Non-
IID of 20%

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Target 80% 50% 75% 75%

FedAvg – – 135 200 150
FedProx – – 120 200 200
FedNova – – 125 – – 150
LG 27 – – 14 17
PerFedAvg 54 110 15 37
CFL – – – – 47 – –
IFCA 28 43 13 19
PACFL 25 40 13 15
FedClust 13 32 7 9

Table 5: Comparison of the required communications costs
in Mb needed for different approaches to reach target top-1
average local test accuracy over different datasets for Non-
IID label skew of 30%

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Target 70% 50% 80% 80%

FedAvg – – 4237.37 79.36 71.43
FedProx – – 4237.37 71.43 71.43
FedNova – – 3601.98 – – 79.36
LG 2.11 – – 1.26 1.76
PerFedAvg 23.81 6356.06 7.54 18.65
CFL – – – – – – – –
IFCA 16.66 3495.19 11.30 10.71
PACFL 10.31 1991.60 7.53 8.73
FedClust 8.66 1889.17 4.60 7.11

of raw data rather than model parameters). More specifically, with
CIFAR-100, IFCA requires communication of 3495.19 Mb to achieve
the desired accuracy of 50% while FedClust only requires 1889.17
Mb. This is because the server in IFCA transmits all cluster models
to participating clients in each communication round which incurs
significant communication cost. Similarly, for CIFAR-10, FedClust
reduces the communication cost by (1.2 - 2.7)×.

FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering ICPP ’24, August 12–15, 2024, Gotland, Sweden

0.5 1.0 1.5 2.0 2.5 3.0
82.0

84.0

86.0

88.0

90.0

92.0

94.0

F
in

al
 A

cc
ur

ac
y

CIFAR-10, Non-IID (20%)

0
10
20
30
40
50
60
70
80
90
100

N
um

be
r

of
 C

lu
st

er
s

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

35
40
45
50
55
60
65
70

F
in

al
 A

cc
ur

ac
y

CIFAR-100, Non-IID (20%)

0
10
20
30
40
50
60
70
80
90

N
um

be
r

of
 C

lu
st

er
s

0.0 0.5 1.0 1.5 2.0 2.5
95.0

95.5

96.0

96.5

97.0

97.5

98.0

F
in

al
 A

cc
ur

ac
y

FMNIST, Non-IID (20%)

0
10
20
30
40
50
60
70
80
90
100

N
um

be
r

of
 C

lu
st

er
s

0.5 1.0 1.5 2.0 2.5 3.0
90.0

91.0

92.0

93.0

94.0

95.0

96.0

F
in

al
 A

cc
ur

ac
y

SVHN, Non-IID (20%)

0
10
20
30
40
50
60
70
80
90

N
um

be
r

of
 C

lu
st

er
s

Figure 4: Test accuracy performance of FedClust versus the clustering threshold _, and the number of suitable clusters for
Non-IID label skew (20%) on CIFAR-10/100, FMNIST, and SVHN datasets. We run each experiment to obtain each point in the
plots for 200 communication rounds with local epoch and local batch size of 10, and SGD local optimizer.

Impact of newcomers. In order to evaluate the performance
of the newcomer clients personalized model, we conduct an experi-
ment with Non-IID label skew (20%) in which only 80 out of 100
clients are involved in a federation with 50 rounds. The remaining
20 clients are incorporated into the network after the completion of
the federation and receive their corresponding cluster model from
the server. The newcomer clients personalize their cluster model
for only 5 epochs. The average local test accuracy of the newcomer
clients is reported in Table 6. Table 6 demonstrates that FedClust
has the capability to incorporate new participants to learn their
personalized model with higher test accuracy.

Trade-off between generalization and personalization. To
address the data heterogeneity, prior works introduced a proxi-
mal term in local optimization or modified the model aggregation
method on the server side to benefit from some degree of personal-
ization [21, 22]. Despite being effective, they lack the flexibility to
balance between globalization and personalization. Our proposed
FedClust framework can naturally navigate this trade-off. The per-
formance of FedClust in terms of accuracy is illustrated in Fig. 4 for
different values of _, which is the clustering threshold that controls
the number of clusters. The blue curve and the red bars illustrate
the accuracy and number of clusters respectively for each _. By
changing the value of _, which is determined based on the dataset,
FedClust can switch from training a fully global model (1 cluster)
to training fully personalized models for each client.

Fig. 4 demonstrates that increasing values of _ lead to a decrease
in the number of clusters, indicating a higher degree of globalization.
FedClust groups all clients into 1 cluster when _ is large enough
and the scenario becomes similar to the FedAvg baseline (pure
globalization). On the other hand, as _ decreases, the number of
clusters increases, resulting in a greater level of personalization.
Each client forms individual clusters when _ is small enough and the
scenario degenerates to the Local baseline (pure personalization).
The result of our experiments across all datasets demonstrates that
all clients benefit from some level of globalization. For Non-IID
label skew (20%), Fig. 2 illustrates that the highest accuracy results
on CIFAR-10, CIFAR-100, SVHN, and FMNIST datasets are achieved
when the number of clusters are 2, 2, 2, and 4, respectively. IFCA
[3] lacks this trade-off flexibility as it requires a predefined number
of clusters.

Computation overhead and privacy. The computational over-
head of FedClust is minimal compared to the FedAvg baseline algo-
rithm. It requires performing one-shot HC after the first round. The

Table 6: Average local test accuracy across unseen clients on
different datasets for Non-IID label skew of 20%

Method CIFAR-10 CIFAR-100 FMNIST SVHN

Local 83.39 ± 1.35 27.91 ± 1.09 94.45 ± 0.51 90.62 ± 0.81
FedAvg 31.72 ± 2.16 32.26 ± 0.48 78.70 ± 2.12 71.18 ± 3.09
FedProx 27.74 ± 2.38 32.74 ± 1.77 74.19 ± 4.17 73.44 ± 4.23
FedNova 31.12 ± 1.08 33.53 ± 0.82 73.76 ± 1.85 72.43 ± 2.91
LG 81.58 ± 0.51 11.08 ± 0.25 95.66 ± 0.33 89.59 ± 0.90
PerFedAvg 74.65 ± 1.09 31.40 ± 0.36 92.33 ± 0.86 64.16 ± 1.64
IFCA 85.64 ± 0.54 94.45 ± 0.5 96.63 ± 0.83 94.20 ± 0.15
PACFL 85.80 ± 0.66 94.45 ± 0.5 97.04 ± 0.54 94.75 ± 0.11
FedClust 86.78 ± 0.67 97.63 ± 0.29 97.63 ± 0.29 95.19 ± 0.25

computational complexity of FedClust is the same as FedAvg, with
the additional complexity of the one-shot HC (O(𝑁 2)), where N is
the total number of clients. FedClust only requires each client to
report selected partial weights for efficient client clustering in the
first round. From the next round, FedClust leverages similar kinds
of information as FedAvg. Therefore, FedClust maintains a similar
level of privacy as state-of-the-art FL methods by collecting the
least necessary information from clients.

6 CONCLUSION AND DISCUSSION
In this paper, we propose a simple and effective clustered federated
learning framework, FedClust, to address the data heterogeneity
issue. The proposed framework aims to identify data distribution
similarities among clients by exploiting the implicit relationship
between the underlying data distribution and model weights. Fed-
Clust efficiently groups clients with non-IID data into an appropriate
number of clusters according to the similarity among the subset of
chosen weights of their locally trained models. The effectiveness of
FedClust has been demonstrated through experimental evaluations
over four popular datasets with a broad range of data heterogeneity
scenarios.

This article includes a statistical analysis of FedClust. The con-
vergence analysis of FedClust is left for future work. In addition,
_ is a user-defined hyperparameter which plays a crucial role in
determining the number of clusters for our clustering approach. We
intend to pursue a data-driven method for dynamically identifying
the optimal value of _ for each dataset in the future.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Sirajul and Li, et al.

ACKNOWLEDGMENTS
The research is supported in part by the NSF under grants OIA-
2019511, OIA-2327452, 2348452, and 2315613, in part by the Louisiana
BoR under LEQSF(2019-22)-RD-A-21 and LEQSF(2024-27)-RD-B-
03, in part by the NSFC under 62372184, and the Sci. and Tech.
Commission of Shanghai Municipality under 22DZ2229004.

REFERENCES
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,

Paul N Whatmough, and Venkatesh Saligrama. 2020. Federated learning based
on dynamic regularization. International Conference on Learning Representations
(2020).

[2] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated learning with
hierarchical clustering of local updates to improve training on non-IID data. In
2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.

[3] William HE Day and Herbert Edelsbrunner. 1984. Efficient algorithms for ag-
glomerative hierarchical clustering methods. Journal of classification 1, 1 (1984),
7–24.

[4] Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen,
and Yujuan Tan. 2020. FedGroup: Efficient clustered federated learning via
decomposed data-driven measure. arXiv preprint arXiv:2010.06870 (2020).

[5] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized fed-
erated learning with theoretical guarantees: A model-agnostic meta-learning
approach. Advances in Neural Information Processing Systems 33 (2020), 3557–
3568.

[6] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An
efficient framework for clustered federated learning. Advances in Neural Infor-
mation Processing Systems 33 (2020), 19586–19597.

[7] Biyao Gong, Tianzhang Xing, Zhidan Liu, Junfeng Wang, and Xiuya Liu. 2022.
Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Com-
puting. Mobile Networks and Applications 27, 4 (2022), 1520–1530.

[8] Filip Hanzely and Peter Richtárik. 2020. Federated learning of a mixture of global
and local models. arXiv preprint arXiv:2002.05516 (2020).

[9] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Md Sirajul Islam, Simin Javaherian, Fei Xu, Xu Yuan, Li Chen, and Nian-Feng
Tzeng. 2024. FedClust: Optimizing Federated Learning on Non-IID Data through
Weight-Driven Client Clustering. arXiv preprint arXiv:2403.04144 (2024).

[12] Simin Javaherian, Sanjeev Panta, Shelby Williams, Md Sirajul Islam, and Li Chen.
2024. FedFairˆ3: Unlocking Threefold Fairness in Federated Learning. in IEEE
International Conference on Communications (ICC) (2024), 1–7.

[13] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. 2019. Improving
federated learning personalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488 (2019).

[14] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning.
PMLR, 5132–5143.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[17] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. 2021.
Oort: Efficient Federated Learning via Guided Participant Selection. In OSDI.
19–35.

[18] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[19] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated learning
on non-iid data silos: An experimental study. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 965–978.

[20] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and
robust federated learning through personalization. In International Conference on
Machine Learning. PMLR, 6357–6368.

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429–450.

[22] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.
On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189
(2019).

[23] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach,
David Brent, Ruslan Salakhutdinov, and Louis-Philippe Morency. 2020. Think
locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523 (2020).

[24] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican
Feng, Tianjian Chen, Han Yu, and Qiang Yang. 2020. Fedvision: An online visual
object detection platform powered by federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34. 13172–13179.

[25] Mingsheng Long, Yue Cao, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.
2018. Transferable representation learning with deep adaptation networks. IEEE
transactions on pattern analysis and machine intelligence 41, 12 (2018), 3071–3085.

[26] Jun Luo, Matias Mendieta, Chen Chen, and Shandong Wu. 2023. PGFed: Per-
sonalize Each Client’s Global Objective for Federated Learning. International
Conference on Computer Vision (2023).

[27] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[29] Mahdi Morafah, Saeed Vahidian, Weijia Wang, and Bill Lin. 2023. FLIS: Clustered
federated learning via inference similarity for non-IID data distribution. IEEE
Open Journal of the Computer Society (2023).

[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[31] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing.
2021. Clusterfl: a similarity-aware federated learning system for human activity
recognition. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. 54–66.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[33] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. 2018. Beyond sharing
weights for deep domain adaptation. IEEE transactions on pattern analysis and
machine intelligence 41, 4 (2018), 801–814.

[34] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. 2020. Clustered feder-
ated learning: Model-agnostic distributed multitask optimization under privacy
constraints. IEEE transactions on neural networks and learning systems 32, 8 (2020),
3710–3722.

[35] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[36] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated multi-task learning. Advances in neural information processing systems
30 (2017).

[37] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards person-
alized federated learning. IEEE Transactions on Neural Networks and Learning
Systems (2022).

[38] Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang Xing. 2021. Feddl:
Federated learning via dynamic layer sharing for human activity recognition. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
15–28.

[39] Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen
Chen, Mubarak Shah, and Bill Lin. 2022. Efficient Distribution Similarity Identi-
fication in Clustered Federated Learning via Principal Angles Between Client
Data Subspaces. arXiv preprint arXiv:2209.10526 (2022).

[40] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated
learning on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 1698–1707.

[41] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Advances in neural information processing systems 33 (2020), 7611–7623.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[43] Jason Yosinski, Jeff Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks? Advances in neural information processing
systems 27 (2014).

[44] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. 2018. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582
(2018).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Federated Learning with Non-IID Data
	2.2 Clustered Federated Learning

	3 Background And Motivation
	3.1 Federated Learning
	3.2 Motivation
	3.3 Observation
	3.4 Overview

	4 Methodology
	4.1 Selection of Model Weights
	4.2 Incorporating Newcomers

	5 Experiments
	5.1 Experimental Setup
	5.2 Results and Analysis

	6 Conclusion and Discussion
	Acknowledgments
	References

