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What are Nocturnal Inversions
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Why Nocturnal Inversions are Important

Farming/Ag. Public Health

e Drift e Aviation " e Respiratory
e Frost e Road/Water B Health
e Animal Safety e Severe Weather

Emissions




Turbulence

~ * The collapse of turbulent kinetic energy, = (u'u" +v'v' + w'w'), is a sure sign of a
~ transition from a mixed to a stable boundary layer that occurs during inversion onset.

Buoyancy = g



MECHANICAL TURBULENCE

FRICTION WITH THE GROUND
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Nocturnal Inversion Formation

* Decay: Surface latent
layer and grow to the
stability are keys
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* The above factors are dependent on the local heterogeneity:
* Land use / land cover (e.g. roughness length, albedo, evapotranspiration)
» Terrain / relative elevation (e.g. basin, valley, ridge, etc.)

* Local in that the footprint is localized to the observation site. The footprint
does not extend upwind or downwind significantly due to the weak winds
?nd low moisture content in fair weather conditions frequent in inversion

ormation.




* Aninversion is defined when the
following conditions are met:

Inversion Sites
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PGHL vs. CCLA

CCLA

* While the NTI frequencies as a function

of the threshold temperature are similar,
N i ol | the seasonal variations show slight
differences. While the winter, spring, and
summer show similar frequencies, the
fall shows significant differences, This
may be a result of CCLA having a highe
latitude and longer nights this ti
year, but it is an or

e T LT
~-aarrh

PGHL Temperature Inversion Frequency CCLA T

Frequency (%)
Frequency (%)

1 2

Frequency (%)
Frequency (%)

2
Inversion Threshold (°C)

2
Inversion Threshold (°C)



PGHL vs. CCLA
* Both sites show classic NTI development with

CCLA two slow cooling phases sandwiched between
a rapid cooling phase that last from roughly an
hour before to an hour after sunset.

3':]1'}emr;er:-1ture (°C) at 0.5, 1.5, 2, 3, and 9-meters at PGHL 06/13/2018 40Trempera(ure (°C) at 0.5, 1.5, 2, 3, and 9-meters at CCLA 09/18/2018

25} st * Both sites show a 5-7 °C temperature
- - difference between 0.5 m and 9 m and a
g g strong deceleration of the winds during rapid
éﬁ %x cooling.
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While drainage flow could be part of the
15— gm contribution to the cooling at PGHL, the/d
—in winds suggest fair weather associ
high pressure is a lez
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CCLA, an event that occurred in the middle of
a flash drought (dry soil) displays a very strong
NTI with a 10 °C temperature drop in the rapid
cooling phase!

With winds out of the NE, the flow passes
through the patch of trees which may act to
generate turbulence and yield the wind
increase and decay of the NTI 3 hours after
sunset. This is unclear as it could be a
transitory atmospheric phenomenon that
weakens the NTI.
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ELST vs. LXGN

Land Cover (2016) for ELST in Madison County 1 km Buffer
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GRDR

Composites

4 (%RDR i (%) by season and threshold (°C)
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croscale Nature of Inversions

FARM Temperature Inversion Frequency: 2°C

Bowling Green, KY
i

FARM Temperature Inversion Frequency: 1°C
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FARM Temperature Inversion Frequency: 1°C FARM Temperature Inversion Frequency: 2°C
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Temperature (°C) and Relative Humidity Dec. 7-9 2019
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here Coupling: Drought

wllde,

2-meter Temperature and Dew Point (°C) Sep. - Oct. 2019
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',_ré-"Co'up'Iing (Cool things Mesonets can observe)

FARM Absolute and Dewpoint Temperature (°C) 11/04/2018 XKMT Absolute and Dewpoint Temperature (°C) 11/04/2018 FACC Absolute and Dewpoint Temperature (°C) Nov. 2020
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FARM snd XKMT Soil Moisture (%ol Nov. 2020 _ A week of fair weather brought on strong L-A coupling

The Bermuda high extended west of the Mississippi leading to southerly
flow at the surface.

Flat geopotential at 250 hPa

Perfect setup for warm days and cold stable nights! (note FACC) And.......
DROUGHT

This is a good example of the early onset of meteorological drought. Rapid
increases in dewpoint depression would soon follow
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ensional Evolution (Cool things Mesonets can do)

XKMT Absolute and Dewpoint Temperature (°C) Nov 5 2020
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* Note the dual dewpoint peaks during the well-mixed phase of boundary layer diurnal cycle:
* Peak 1: Rapid moistening after sunrise prior to explosive PBL growth
* Peak 2: Moisture flux convergence due to continued latent heating during the transition to a stable PBL

* Behavior between the two peaks dependent on the land surface state, particularly the soil moisture
* Slow decline in midday dewpoint if moisture fluxes cannot compensate entrainment heating/drying
* Slow increase if soil moisture sufficiently large to maintain a large Bowen Ratio to reduce sensible heating, PBL
growth and subsequent dry air entrainment and mixing
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* Mixing Diagrams, or phase space diagrams of the conserved variable moist static energy, allows us to
visualize the three-dimensional evolution without knowledge of surface or entrainment fluxes:



Indices and Micro-Macro:
~ Tropical Nights Example

Average Minimum Temp. (°F): Departure from Mean
October 7, 2021 to November 4, 2021

tropical nights are a
impact of climate change.
* Different in Gulf Coastal regions?

* Underlying Methodology of PREFER
(e.g. machine learning with mesonet [ —
cli-MATE: MRCC Application Tools Environment

training data sets) lends itself naturally to Goneiato o 11/8/2021. 8:57:14 M oo
find important correlations in the understanding of climate change




Climate Indices: Aggregate on daily, weekly,
monthly, seasonal, and annual timescales

Precipitation Indices (e.g. Precipitation sums: see below)
Wind Indices (e.g. Days with a given wind direction)

Heat/Drought Indices (Drought Measures, Reference Evapotranspiration, etc.)

Compound Indices (e.g. Soil Moisture — Precipitation)



« With a decade plus of soil and prélp ation data, the PREFER project can explore

a vast treasure of soil moisture- preC|p|tat|on data and utlllze the results for
forecasting warm season rainfall.

No background wind Background wind

Froidevaux, P., Schlemmer, L.,
Schmidli, J., Langhans, W., &
Schar, C. (2014). Influence of
the background wind on the
local soil moisture—precipitation

‘ | feedback. Journal of the
atmospheric sciences, 71(2),
782-799.
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Climate Indices

HCKM Mean Qew Point T e (TC) HCKM P(ecipitation Sum (mm) HCKM Very Heavy Precipitation Days (PRCP >= 20 mm)
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mate in the Ohio River Valley
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HRRR Relevant Parameters: Radiation

« DLWRF: Downwelling longwave

* Parameterized from mesone
* USWRF: Upwelling shortwave radiation
* Calculated from MODIS derived albedo and mesonet site observed DSWRF
* ULWRF: Upwelling longwave radiation
* Parameterized from mesonet site shortwave radiation and parameterized DLWRF




HRRR Relevant Parameters: Dynamics/Kinematics

Observed at mesonet sites with
conditions.
UGRD: 10 m zonal wind
* Directly measured at mesonet sites
VGRD: 10 m meridional wind
* Directly measured at mesonet sited
GUST: Surface gusts?
* Assuming this is 10 m, directly measured at mesonet sites




" HRRR Relevant Parameters: Thermodynamics

density se the average of the two p e level temperatures)
* Directly measured at mesonet S|tes PIE TR | . e RO - A YN a5
DPT: 2 m dew point temperature
* Directly measured at mesonet sites (dew point or rh along with pressure can be used to calculate vapor
pressure and mixing ratio)
RH: 2 m relative humidity
* Directly measured at mesonet sites
PWAT: precipitable water (column integrated water vapor and used to measure the greenhouse effect which
negatively impacts inversion development)
* Remote sensing: MODIS/GOES 16
HGT: height of adiabatic condensation from surface. Extremely useful in soil moisture-precipitation feedbacks
* Parameterized from direct observations of temperature and relative humidity (pressure can be useful too)
at mesonet sites




HRRR Relevant Parameters: Land Surface

VGTYP: Vegetatlon type s e R
* Remotely sensed and |mportant for surface roﬁéhﬁeéé air'id"éli'big' .
* Terrain Roughness: Standard deviation of elevation (key for cold air drainage)
* Remotely sensed digital elevation model




Conclusions: Inversions

e Observations
* Nocturnal inversions are ubiquitous but formation and evolution are unique to sites due to
land surface characteristics that describe land-atmosphere coupling.

* While weak winds and lack of cloud cover are a necessary condition to limit vertical mixing
for formation, land surface conditions provide the sufficient condition for formation.

-+ For example, under a dome of high pressure, drier soils should lead to more frequent
~ inversion formation. Similarly, regions susceptible to downslope cold pools would be more
0 develop a surface inversion than flat terrain. ‘

. Modelmg T .. T ; .
* SCMis ideal for exploring how model phy5|cs (e.g. LSM PBL coupllng) indcast the afternoon-
evening transition and inversion development.
* Setup a LAM with high surface layer resolution to provide forecasts of inversion onset.
 Utilize LES or LAM/LES for theoretical process studies of inversion formation and disruption.

» Utilize perpetual offline LSM “spin-ups” to provide a more accurate lower BC
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intensity, evolution, and
early morning decay

 Land Between the Lakes
National Recreation Area

e Appalachia




Future Work / Conclusions

* Two periods t D Investig: |
* After-Evening Transition (Inversion Formation and Intens
* Morning Transition (Inversion Duration and Decay).

* Microscale monitoring setup yields the significance of elevation (cold air
drainage and pooling), in addition to winds and moisture (clouds) in inversion
development.

L} pe -
Bl e 0 MM R

S s

* Inversions can yield temperature changes of the same magnitude and
time scale as a moderate cold front (~¥10°C in 2 hours).




Interpolation Algorithm

Complete

(digital elevati e thermal
account for elevation changes on temperature s

a



Interpolation Algorithm

Temperature - extrap
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Interpolation Algorithm

"- VLT'..-:“'-‘ e mernta |
account for elevation"changes on temperaturesa
Complete

Use the DEM and remotely-sensed NDVI (normalized difference
vegetative index) to determine roughness length and slope factors
to account for changes in wind speed and surface radiation

Precipitation is highly stochastic and therefore the most difficult...
Use random forests/cluster analysis/machine learning




Conclusions: Climate Indices




