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Abstract—Detecting vulnerable code blocks has become a
highly popular topic in computer-aided design, especially with the
advancement of natural language processing (NLP). Analyzing
hardware description languages (HDLs), such as Verilog, involves
dealing with lengthy code. This letter introduces an innovative
identification of attack-vulnerable hardware by the use of
opcode processing. Leveraging the advantage of architecturally
defined opcodes and expressing all operations at the beginning
of each code line, the word processing problem is efficiently
transformed into opcode processing. This research converts a
benchmark dataset into an intermediary code stack, subsequently
classifying secure and fragile codes using NLP techniques. The
results reveal a framework that achieves up to 94% accuracy
when employing sophisticated convolutional neural networks
(CNNs) architecture with extra embedding layers. Thus, it
provides a means for users to quickly verify the vulnerability
of their HDL code by inspecting a supervised learning model
trained on the predefined vulnerabilities. It also supports the
superior efficacy of opcode-based processing in Trojan detection
by analyzing the outcomes derived from a model trained using
the HDL dataset.

Index Terms—Convolutional neural networks (CNNs), deep
learning, hardware description language (HDL), hardware secu-
rity, natural language processing (NLP), opcode.

I. INTRODUCTION

EVELOPING secure code is of paramount importance

not only in software engineering but also in hard-
ware engineering. While the literature has seen considerable
research on software-only vulnerabilities, the design of hard-
ware necessitates a higher-level consideration and a prudent
approach. Ensuring the secure coding of hardware modules
using hardware description languages (HDLs) during design
space exploration is crucial before reaching the register-
transfer level (RTL). Identifying code vulnerabilities at this
stage is critical and cost-effective before the actual hardware
fabrication. The assessment of code written in HDL for
potential adversarial scenarios gives rise to the need for either
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testing through a testbench to engage in heuristic analysis or
employing machine learning (ML) techniques to detect known
attack patterns. However, comprehensively testing the integrity
of the code flow presents challenges, especially considering
the complex syntax. A new concept of an intermediary code,
similar to low-level code, can be applied to the HDL code. This
is where the simplicity of assembly language comes into
play. The hardware—software defined in the HDL is translated
into an equivalent intermediary code, preserving the logic
and flow of the original code. This process ensures that each
individual operation is guaranteed as a single instruction, and
the register transfers following the opcodes.

This study applies conventional ML and neural network
(NN) approaches to the preliminary unification procedure in
the assembly language. To test and evaluate the effective-
ness of the methodology, a widely recognized benchmark,
Trust-Hub [1], is employed. Notably, this study explores
ML techniques when applied to a problem transferred into
a different code space: from HDL to assembly via C++.
The experimental results demonstrate fruitful findings for the
benchmark. The key contribution of this letter lies in pioneer-
ing the processing of assembly codes from HDL for the
detection of malign attacks. Furthermore, a novel ML explo-
ration is presented, focusing on performance evaluation using
various data-mining metrics based on the confusion matrix.
Ultimately, the main objective is to introduce design steps that
offer an intermediary security checkpoint within the integrated
circuit (IC) supply chain. The structure of this letter is as fol-
lows. Section II provides the background and motivation of the
study. Section III delves into the detailed presentation of our
proposed methodology. For a comprehensive understanding of
the conventional versus NN performance, Section IV offers
a thorough ML-based design space exploration. In addition,
Section V addresses the assumptions and limitations of this
letter. Finally, the conclusions are outlined in Section VI.

II. BACKGROUND AND MOTIVATION

Hardware trojans (HTs) are malicious modifications or
insertions in the design or fabrication of ICs. These Trojans are
intentionally introduced to compromise the security, reliability,
or functionality of hardware systems without the knowl-
edge of the end users. The insertion of HTs can occur at
various stages of the IC’s lifecycle, including specification,
design, fabrication, testing, and packaging (please see Fig. 1).
Conventional VLSI manufacturing, testing, and verification
approaches demonstrate ineffectiveness in detecting HTs due
to the unique and unmodeled characteristics of these malicious
modifications. Moreover, the constraints in chip manufacturing
and the absence of confidence in third-party foundries for
chip fabrication further undermine the suitability of these
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IC supply chain, as defined by Yasaei et al. [9], involves the insertion of HTs during the early phases of design, either in C/C++/SystemC-related

designs or in HDL designs. Detecting and inspecting these malicious actions early on can effectively prevent potential cumulative security breaches. Notably,
third-party IP providers are marked with *, which can trigger security issues. Any participant in the digital design process is considered a potential attacker
with the ability to introduce a module for altering the design as an integral component of the overall architecture rather than as a separate IP. (LVC: layout
versus schematics, DRC: design rule checking, and GDSII: Graphical Database System II.)

conventional techniques [2]. The field of HTs detection
encompasses two main categories: 1) presilicon detection
and 2) post-silicon detection [3]. The detection strategies for
presilicon Trojan detection can be categorized into static and
dynamic approaches [4], [S] incorporating various ML and
deep learning techniques [6]. In the post-silicon detection
step, the methods can be further categorized into destructive
and nondestructive detection approaches. The former involve
techniques like reverse engineering to reconstruct the design
and compare it with a reference model (also known as
golden chip) [3]. The latter uses logic testing and side-channel
analysis approaches that compare the design outputs with the
correct reference results [7]. Dong et al. [4] proposed the
MHTtext model, which serves as a method for detecting HT's
using TextCNN as a deep learning approach. The model auto-
matically extracts HT components from netlist files without
comparing them with the golden chip. The state-of-the-art
(SOTA) approaches employ ML techniques to detect HTs.
These methods concentrate on the timing model at design time
incorporating voltage noise and the trained NN as a watchdog
tracking process [2].

The literature reveals various hardware-related techniques
for Trojan detection, such as @ full Trojan activation; @
power-based Trojan detection; and @ delay-based Trojan
detection [8]. Our study aims to shift the focus from examining
the physical state of case-by-case HT analysis to deriving
conclusions from the software aspect. The ultimate goal is
to attain a generalizable code flow, enabling code analysis
through ML models without resorting to heuristic searches.

III. OPCODE LANGUAGE PROCESSING
A. From Hardware Descriptions to Machine Code

Assembly language serves as a universal representation
for a human-readable machine language. Its structure is more
straightforward compared to high-level programming lan-
guages. Despite having limited operational codes and reserved
bits, it clearly defines the source and destination registers
for each equal-structured opcode, yielding a simple and
predetermined flow. As illustrated in Fig. 1, the initial design
implementation in the IC chain is already in C/C++/SystemC,
establishing a relative relationship between HDL and these
languages. Given the vulnerabilities associated with third-party
intellectual properties (IPs) in each programming approach, a
unique solution can be applied to address both. This solution
lies in the assembly code-based analysis, leveraging its well-
structured format.

Fig. 2 illustrates the proposed approach, which addresses
the vulnerability of HDL design to attacks, focusing on this
specific aspect of the IC production chain. The central con-
tribution of this letter lies in the proposing and integration of
Opcode language processing (OLP), necessitating an initial
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Fig. 2. Proposed approach is positioned within the IC supply chain, with low-
level language design, such as C++, serving as a preliminary step before RTL
design. Reverting the code flow back to C++ makes it possible to inspect the
system’s behavior more effectively. To achieve a unified and generalized code
flow for any module design, the lowest-level platform-dependent assembly
code comes into play, bridging the gap between the intermediate C++ form
and the final RTL design. A unique proposition in this letter involves opcode
processing, which facilitates the inspection and classification of behavior as
either “malign” or “benign.”

intermediary step of language conversion, followed by the
application of classifiers through ML methodologies.

Generating opcode requires translating a C/C++ code
from the Verilog module. However, manually creating
a C/C++ equivalent code from Verilog presents signifi-
cant challenges. As a result, a practical and automated
Verilog to C/C++ translation/conversion tool becomes
imperative. A popular tool for automatic conversion is
Verilator [10]. It converts synthesizable Verilog into C++.
Notably, Verilator possesses properties that render it
particularly suitable for our application, including its ability
to handle large amounts of gates and create a C++ wrapper
file with all the necessary inclusion of header files. Our
approach comprises three main steps: @ inputting Trojan-
infected and Trojan-free Verilog modules into Verilator;
@ Verilator execution: generating a header and a C++ file;
and ® compiling the C++ file, along with the header, using
GNU compiler collection (GCC) to produce the assembly
equivalent. Fig. 3 illustrates the overall steps.

B. Exploration of Netlist Vulnerabilities

We begin by investigating netlist analysis for detecting HT's
within an ML framework. This involves generating multiple
benchmarks to identify vulnerabilities and inserting various
HTs using a specialized Trojan insertion tool [11]. A synthetic
benchmark generator is then employed, allowing the creation
of circuit benchmarks with user-defined parameters, such as
depth levels, logical units, inputs/outputs, and wire counts [12].

Following the extraction of HTs from benchmarks provided
by [11], a stochastic approach is employed to insert these HT's
into the benchmarks. This insertion process is executed by
targeting nodes identified as “rare nodes” [13], characterized
by a signal probability below a defined threshold. These
rare nodes are identified through a vulnerability score (VS)
computation, where VS = Pr(0)(1 — CCy/CCy + CCy), with
Pr(0) representing the probability of a node transitioning
to “0,” and CCp and CC; indicating the efforts to guide
the node to “0” and “1,” respectively. The higher Pr(0)
signifies a greater chance of transitioning to an undesired state,
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(b)

Procedures for creating opcode and HDL datasets. (a) Methodology for generating Trojan-injected and Trojan-free instances. (b) Preliminary steps to

unify the HDL code written in any description language. The first step in this process is the conversion to C/C++. The Verilator tool is employed, allowing
for seamless C++ conversion. The obtained C++ code undergoes conversion to assembly language, following thorough checks on the compiler side. The
architecture chosen for this purpose is Intel x86. Ultimately, the result is an opcode stream, which is the final outcome of this unification process. (SVM:

support vector machine and NB: naive Bayes.)
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Fig. 4. Training, test, and validation results based on the HDL dataset. (a) and (b) Exhibit model trained with an embedding size of 48. (c) and (d) Exhibit
an embedding size of 96. The model encounters difficulty when dealing with complex patterns within HDL code, particularly when attempting to identify
indications of Trojan injections. Its tendency to consider typical code structures more common leads to classifying all test cases as Trojan-free. Essentially,
the model learns to generalize more confidently toward Trojan-free (negative) predictions.

countered by lower controllability preventing “0” transitions.
Subsequently, stochastic HT templates are linked to these
identified nodes [14].

Upon completion of the procedural stages outlined in
Fig. 3(a) for the HT injection process, a dataset consisting
of 2000 samples, all containing HDL code, is obtained. This
dataset includes 1000 Trojan-infected HDL files and an equal
number of Trojan-free HDL files. The rationale behind initially
evaluating HDL code before opcode analysis is rooted in the
notion that HDL can offer insights into Trojan contamination.
In contrast to the standardized instructions present in
opcodes, the utilization of HDL code introduces several
complexities. These complexities encompass extended code
lengths, intricate code lines dedicated to expressing singular
operations, and extensive keywords in HDL. These attributes
augment the intricacy of representing individual inputs during
embedding HDL model in the training phase. Furthermore,
diverse keywords within the code expand the vocabulary size, a
significant parameter influencing the model’s training process.
As indicated by the results illustrated in Fig. 4, the convo-
lutional neural network (CNN) model exhibits limitations in
solely utilizing HDL code processing for detecting the Trojan-
infected status of a module. Consequently, an imperative
arises to explore alternative approaches more amenable to
the application of NLP algorithms, with a focus on opcode
analysis.

C. Learning the Mnemonics

We treat the Trojan detection problem as sentence classi-
fication in our proposed approach. Instead of using regular

words from human language, we employ opcodes to train
our data. Thus, our sentences consist of sequential opcodes
converted from Verilog modules, while our words represent
the instruction set for computer architecture. The funda-
mental distinction between classifying a sentence in human
language and classifying opcodes lies in the structure
of the inputs. While sentences typically consist of 15-20
words, opcodes can result in extremely long sentences
containing up to 4000-5000 words. Consequently, our problem
poses a unique challenge, as it involves classifying long
sentences with a fixed number of words. To address this
issue, we employed 1) ML and 2) deep learning algorithms
to determine the most accurate model based on respective
performances. The proposed CNN model can learn intricate
patterns within Trojan-infected and Trojan-free inputs. In 1),
raw text data are encoded into a transformed dataset using the
term frequency-inverse document frequency transformer (TF-
IDF). This encoding method down-weights the significance of
frequently occurring words while emphasizing the value of
rare words within a document. Since opcodes often consist
of repetitive instructions, vectorizing the raw text data based
on their importance becomes essential. In 2), the proposed
OLP leverages the capabilities of CNNSs, requiring vectorized
inputs. Traditional methods, such as Bag-of-Words and TF-
IDF, adopt frequency-based approaches to vectorize data into
fixed-length input documents. Our approach adopts a different
strategy by training our model with its own embedding layer.
This approach offers the advantage of localizing our embed-
dings for opcode analysis. We can modify the embedding
dimension according to different test cases by training our
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TABLE I
PERFORMANCE MEASUREMENT METRICS
Trained Model TP | FP | TN | FN | TPR FPR | Accuracy | Precision | Recall | F1-Score | Matthews Correlation Coeff.
SVM 9]0 29 | 26 | 0.422 0 0.648 1.000 0.422 0.593 0.471
NBC g 0 33 | 33 | 0.195 0 0.554 1.000 0.195 0.326 0.312
EMBEDDING-I + CNN | 34 | 4 25 0 1.000 | 0.137 0.936 0.894 1.000 0.944 0.878
EMBEDDING-IT + CNN | 34 | 4 25 0 1.000 | 0.137 0.936 0.894 1.000 0.944 0.878

CNN details: The model architecture consists of an Embedding Layer with an input size of 96, followed by a 1-D Convolutional layer with 32 filters and a kernel size of 8, then a
MaxPooling 1-D layer with a pool size of 2. The model also includes BatchNormalization, a Flatten layer, a Dense layer with 10 units using ReLU activation, a Dropout layer with
a dropout rate of 0.15, and finally, a Dense output layer with 1 unit and sigmoid activation for binary classification. The model is trained using the Adam optimizer with an initial
learning rate of 0.001. Early stopping and learning rate reduction are applied with a factor of 0.2, reducing the learning rate to a minimum of 10~ to prevent overfitting. Embedding
Size: EMBEDDING-I: 48, EMBEDDING-II: 96. (TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative, TPR, FPR: True Positive and False Positive Rates.) The
overall time complexity of our entire pipeline is dominantly influenced by the input length within the CNN architecture and is approximately O(N X F x F x K), where ‘N’ is
input sequence length (N = 5389), ‘F” is the filter size (F' = 3), and ‘K is the number of filters (K = 32). Our open-source development environment can be accessed from [15].
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Fig. 5.

Training, test, and validation results based on the opcode dataset which contains 490 samples. Each class has an equal number of samples. (a) and

(b) Exhibit model trained with an embedding size of 48. (c) and (d) Exhibit an embedding size of 96.

embeddings. Consequently, our architecture becomes adept
at discerning patterns within embedded datasets, leveraging
shift-invariance, automatic feature extraction, and local feature
learning.

IV. EXPERIMENTS AND RESULTS

We utilized datasets sourced from Trust-Hub [16], [17] for
our experiments. These datasets comprise Verilog gate-level
netlist files, each appropriately labeled to distinguish between
Trojan-free and Trojan-infected modules. Our focus lies in
model exploration and hyperparameter tuning strategies, which
are crucial for optimizing the proposed CNN architecture. By
carefully evaluating critical parameters during training, we aim
to obtain reliable results.

A. Model Exploration

We first employ support vector machine (SVM) and naive
Bayes classifier (NBC) due to the limited size of the available
Trojan benchmarks compared to SOTA sentence classification
datasets [18]. While ML algorithms find sentence classification
in human language relatively straightforward, the opcode
analysis presents a challenging task due to the complex
nature of the input dataset. To overcome this challenge, we
consider CNN-based architectures. These architectures are
conventionally used in NLP for text classification and next-
sentence prediction tasks on diverse datasets [19].

Conventional ML Models: SVM and NBC are trained
and tested using the generated opcode dataset. Both
of these algorithms face challenges stemming from the
Curse of Dimensionality problem, which arises due to the
extensive dimensions of the input data. Traditional vector-
ization approaches in ML algorithms lack the capability to
assign importance weights to each input based on location
embedding. Consequently, simple frequency-based encoding
techniques fail to yield meaningful values compared to loca-
tion embeddings. As a result of these limitations, both SVM
and NBC exhibit poor performance on the test data; their
predictions appear to be nearly random, as evident from the

outcomes presented in the first two rows of Table I. This
underscores the need for more sophisticated approaches to
handle the complexities of the opcode dataset.

B. Proposed CNN Architecture

The proposed sequential model encompasses an embedding
layer, 1-D convolutional, and dense layers. Regularization
techniques, such as batch normalization, dropout, and early
stopping, have been incorporated to mitigate overfitting con-
cerns. (Please refer to Table I footnote for further architectural
details.)

Data Augmentation: Due to the limited size of the opcode
dataset in benchmarks, we resorted to employing data augmen-
tation techniques to enrich the available data. Specifically, we
utilized random swapping and random deletion augmentation
techniques [20]. Leveraging the shift-invariance feature of
CNNs, we could modify the order of instructions, striking a
valuable balance between accuracy and data augmentation.

Model Exploitation: The process of selecting hyperparam-
eters was carried out through a series of tests conducted
on the dataset. The vectorized version of each input token
can have varying effects depending on the chosen embedding
size and other hyperparameters. In our experimentation, we
evaluated two embedding sizes: 48 (EMBEDDING-I) and
96 (EMBEDDING-II); each is tested on a dataset with a
vocabulary size of 513. The results of the training model
with two embedding sizes are presented in Fig. 5. The final
experiment with an embedding size of 96 achieves an accuracy
of 94%.

The ultimate results were obtained with an embedding
size of 96 using the opcode dataset. All evaluation metrics
on the opcode data are presented in the last two rows of
Table I. The results, including F1-score, recall, and Matthews
correlation coefficient, affirm that an embedding size around
48-96 can be chosen, thereby facilitating yet efficient training
process. In conclusion, an embedding size of at least 48 guar-
antees classification accuracy above 93%. This comprehensive
exploration and selection of the appropriate hyperparameters
significantly contributes to the overall success of the model.
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TABLE II
ACCURACY COMPARISON OF THE SOTA METHODS

Reference Architecture Accuracy
[21] Random Forest 76.8%
[22] Neural Network 92.2%
[23] Clustering 87.0%
[24] XGBoost 90.0%

This work | Embedding + CNN 93.6%

Table II compares our method’s accuracy results to other ML-
related HT detection SOTA studies.

V. ASSUMPTIONS AND LIMITATIONS

The assumptions and limitations of this letter are as follows.

Assumptions:

1) Our study employs a supervised learning approach
within an ML framework.

2) We treat opcodes as analogous to NLP challenges.

3) Our dataset analysis relies on rare nodes and VS.

4) We initially assumed that the CNN architecture consti-
tutes the most suitable solution for the problem.

This assumption was made based on rigorous scientific eval-
vation involving a comparative analysis with conventional
architectures and subsequent experimental validation, affirm-
ing the redundancy of more intricate NN designs.

Limitations:

1) The preprocessing step for converting HDL to
assembly language has minimal computational
impact, albeit constituting a limitation.

2) Converting opcodes to assembly language may
result in longer code lines, notwithstanding its benefits
in enhancing structural learning in artificial intelligence
(AI).

3) Our primary focus centers on vulnerabilities within the
hardware-related software aspect of the supply chain,
while further stages, including gate-level netlists, layout,
fabricated chips, and third-party soft IPs, hold potential
for future ML-driven vulnerability analysis.

Future efforts can unveil new opportunities to analyze vulnera-
bilities and malign-benign scoring for black box IP cores using
unsupervised learning methods. Furthermore, an expanded
dataset encompassing HDL to opcode conversion could be
generated through Al-driven generative data techniques, such
as those involving pretrained transformers. This generated data
could serve as an opportunity to assess the performance of our
proposed approach on a broader scale.

VI. CONCLUSION

This letter evaluated the HT detection problem considering
assembly and HDL code, employing ML and deep learning
methods. The extensive HDL dataset, which is fourfold larger
than the opcode dataset, serves to affirm that the analysis of
opcode is pivotal in comprehending the underlying patterns
of Trojans. Despite a smaller opcode dataset compared to the
HDL dataset, the model extracts more patterns, yielding better
accuracy. The new approach proved to be instrumental in the
CNN integration for opcode processing, as it enabled us to
distinguish between Trojan-infected and Trojan-free hardware
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description modules. The insights gained from this analysis
offer valuable implications for future studies aimed at attack
classification.
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