
ManiHD: Efficient Hyper-Dimensional Learning
Using Manifold Trainable Encoder

Zhuowen Zou∗, Yeseong Kim‡, M. Hassan Najafiψ , Mohsen Imani†?
∗University of California San Diego, ‡DGIST, ψ University of Louisiana, †University of California Irvine

?Email: m.imani@uci.edu

Abstract—Hyper-Dimensional (HD) computing emulates the
human short memory functionality by computing with hyper-
vectors as an alternative to computing with numbers. The main
goal of HD computing is to map data points into sparse high-
dimensional space where the learning task can perform in a
linear and hardware-friendly way. The existing HD computing
algorithms are using static and non-trainable encoder; thus, they
require very high-dimensionality to provide acceptable accuracy.
However, this high dimensionality results in high computational
cost, especially over the realistic learning problems. In this
paper, we proposed ManiHD that supports adaptive and train-
able encoder for efficient learning in high-dimensional space.
ManiHD explicitly considers non-linear interactions between the
features during the encoding. This enables ManiHD to provide
maximum learning accuracy using much lower dimensionality.
ManiHD not only enhances the learning accuracy but also
significantly improves the learning efficiency during both training
and inference phases. ManiHD also enables online learning by
sampling data points and capturing the essential features in an
unsupervised manner. We also propose a quantization method
that trades accuracy and efficiency for optimal configuration.
Our evaluation of a wide range of classification tasks shows
that ManiHD provides 4.8% higher accuracy than the state-
of-the-art HD algorithms. In addition, ManiHD provides, on
average, 12.3× (3.2×) faster and 19.3× (6.3×) more energy-
efficient training (inference) as compared to the state-of-the-art
learning algorithms.

I. INTRODUCTION

In 2025 more than 175 Zettabytes of data will be generated
worldwide, much of it by machines, but less than 1% will be
analyzed. We are drowning in data. Today’s systems rely on
sending all the data to the cloud, and then using complex
algorithms, such as Deep Neural Networks, which require
billions of parameters and many hours to train [1], [2].
This computational cost is beyond the capability of today’s
embedded devices, which often have limited resources and
battery [3]. Therefore, we need alternative learning methods
to train on the less-powerful devices while providing good
enough classification accuracy.

The human brain can do much of this learning effortlessly.
In particular, Hyperdimensional (HD) computing has been
proposed as a light-weight brain-inspired learning methodol-
ogy [4], [5], [6]. HD computing is motivated by the obser-
vation that the human brain operates on high dimensional
representations of data [4]. This high-dimensional space is
referred to as a hyperspace, while points in the space are
known as hypervectors. Because of their high-dimensionality,
any randomly chosen pair of hypervectors will be nearly
orthogonal (e.g., uncorrelated). HD computing provides sev-
eral features that make it suitable for efficient learning in
IoT systems. First, HD models are computationally efficient
(highly parallel at heart) to train and amenable to hardware

level optimization [7], [8], [9], [10]. Second, HD models offer
an intuitive and human-interpretable model and offer a com-
plete computational paradigm that can be applied to cognitive
and learning problems [11], [12]. Finally, it provides strong
robustness to noise – a key strength for IoT systems. These
features make HD a promising solution for today’s embedded
devices with limited storage, battery, and resources [13], [14],
[15].

HD computing performs the learning task after encoding all
data points to high-dimensional space. The required dimen-
sionality of HD computing increases based on the complexity
of the classification takes. All existing HD computing methods
use a static and non-trainable encoder to map data into high
dimensional space [7], [6], [5], [16]. In other words, the
encoding module does not learn or differentiates between
the features in the input data. Therefore, HD computing
requires very high dimensionality in order to solve realistic
learning problems. However, higher dimensionality results in
low computational efficiency.

In this paper, we proposed ManiHD, a trainable encoder for
efficient adaptive learning in high-dimensional space. ManiHD
enhances the randomized HD encoder with manifold learning
in order to eliminate the extreme dimensionality of hypervec-
tors. The main contributions of the paper are as follows:

• To the best of our knowledge, ManiHD is the first HD
computing approach that provides adaptive and trainable en-
coding. Instead of using a static encoder, ManiHD explicitly
considers non-linear interactions between the features during
the encoding. This enables ManiHD to provide maximum
learning accuracy using much lower dimensionality.

• ManiHD enables online learning by frequently sampling
data and capturing the important features in an unsupervised
manner. ManiHD enables to adapt itself to changes in the
input data or environment during the prediction phase.

• To reduce the ManiHD computation cost, we also introduce
the idea of quantizing the encoding module. In addition,
to compensate for the quality loss caused by quantization,
while providing an optimal system efficiency.

ManiHD dimension reduction results in significant improve-
ment in the efficiency of training and inference phases. We
evaluation ManiHD on a wide range of classification problems.
Our evaluation on a wide range of classification tasks shows
that ManiHD provides 4.8% higher accuracy than the state-
of-the-art HD algorithms. In addition, ManiHD provides, on
average, 12.3× (3.2×) faster and 19.3× (6.3×) more energy-
efficient training (inference) as compared to the state-of-the-art
learning algorithms.

qD Query

Class 1

Class 2

Class k

q1

Similarity

In
it

ia
l

T
ra

in
in

g

Retraining
(model update)

Training
Data

Original
Space

Inference
Data

Training
Data

HD Space
E

n
c

o
d

in
g

 M
o

d
u

le

A B

C

D

qD-1

𝛿

𝛿

𝛿

M
a
x

Fig. 1. Overview of HD computing for classification.

II. MANIHD CLASSIFICATION

Figure 1 shows the overview of the HD classification. In
the first step, HD computing performs the learning task after
mapping all training data into the high-dimensional space [7],
[5], [17]. To find the universal property for each class in the
training dataset, we combine hypervectors belonging to each
class, i.e., adding the hypervectors to create a single hypervec-
tor for each class. Once combining all hypervectors, we treat
per-class accumulated hypervectors, called class hypervectors,
as the learned model. Next, a similarity search procedure
performs the inference task. For a given query hypervector
encoded for a tested data point, it selects the class that has the
most similar class hypervector. In the following, we explain
the details of the learning process and related work.

A. Classification in HD Space

•A Encoding: The encoded data should satisfy the common-
sense principle: data points which are different from each other
in the original space should be also different in the high-
dimensional space. There are multiple encoding methods pro-
posed in literature [18], [19], [7]. Although these methods have
shown excellent classification accuracy for their application-
specific problems, to the best of our knowledge, the existing
encoding methods linearly combine the hypervectors corre-
sponding to each feature, resulting in sub-optimal classification
quality for general classification problems. To obtain the most
informative hypervectors, the HD encoding should consider
the non-linear interactions between the feature values with
different weights.•B Training: In the training step, HD combines all the
encoded hypervectors of each class using the element-wise
addition. For example, in an activity recognition application,
the training procedure adds all hypervectors which have the
”walking” and ”sitting” tags into two different hypervectors.
Where Hi

j = 〈hD, · · · ,h1〉 is encoded for the jth sample in
ith class, each class hypervector is trained as follows: Ci =
∑ j Hi

j = 〈ci
D, · · · ,ci

1〉
If the encoding method projects the original data non-linearly
to the high dimensional space, the linearly combined model
can perform well even on non-linearly separable data.•C Retraining: Once the initial training is done, we train the
class hypervector model again to improve the classification
accuracy. In this retraining step, we calculate the similarity
between each encoded hypervector and trained model to check
whether the data sample is correctly classified or not. If the
encoded hypervector, H, is correctly classified by the current
model, we will make no changes to the model. Otherwise,

we update the model by respectively adding and subtracting
it from the correct and incorrect classes as follows:
Ccorrect

= Ccorrect + αH and Cwrong
= Cwrong − αH

The retrained model provides a better fit to the training data
and gets higher accuracy. We repeat the same procedure for
multiple iterations. In our observation, repeating 20 iterations
yields sufficient convergence for all the tested datasets.•D Inference: The main computation of the inference is the
encoding and associative search. We perform the same encod-
ing procedure to convert a test data point into a hypervector,
called query hypervector, Q ∈ {0,1}D. Then, it computes the
similarity of the query hypervector with all k class hypervec-
tors, {C1,C2, · · · ,Ck}. We measure the similarity between a
query and a ith class hypervector using: δ 〈Q, Ci〉, where δ

denotes the similarity metric. After computing all similarities,
each query is assigned to a class with the highest similarity.

B. Challenges

The existing HD algorithms are using a static encoder to
map data into high-dimensional space. We observe that this
is the main reason that HD requires high dimensionality to
provide acceptable accuracy. However, the HD computation
cost increases with hypervector dimensionality. In this paper,
we propose the idea of adaptively and trainable encoder which
enables HD computing to provide maximum accuracy in much
lower dimensionality.

III. MANIHD ADAPTIVE ENCODING

This section proposed ManiHD, an HD-based classification
algorithm supporting an adaptive encoder for efficient learning
in high-dimensional space. ManiHD encoder is built based
on two goals: (i) an encoder that can provide high classifica-
tion accuracy in smaller dimensions, (i) a dynamic encoding
module that can adaptively change depending on data and
environment. ManiHD introduces a novel HD encoder that
considers the relationship between different features before
mapping data into high-dimensional space. ManiHD samples
a small portion of training data to determine the relationship
between different features in an unsupervised way. Then, it
modifies the HD encoder to consider such a relationship before
encoding the data point. ManiHD provides several interesting
features: (i) eliminates the necessity of using a very large naive
projection matrix as an encoding module, (ii) provides high
classification accuracy even using lower dimensionality.

A. Non-Linear Encoding

In this context, we propose a novel encoding method
which exploits the kernel trick to map data points into the
high-dimensional space. The proposed encoding method is
inspired by the Radial Basis Function (RBF) kernel trick
method [20], [21]. Figure 2A shows our encoding procedure.
Let us consider an encoding function that maps a feature vector
F = { f1, f2, . . . , fn}, with n features (fi ∈N) to a hypervector
H = {h1, h2, . . . , hD} with D dimensions (hi ∈ {−1,1}). We
generate each dimension of the encoded data by calculating a
dot product of the feature vector with a randomly generated
vector as hi = cos(Bi ·F), where Bi is the randomly generated
vector with a Gaussian distribution (mean µ = 0 and standard

h1

f'1

f'2

f'k

B11

Distribution
f1 f2 fn

M1n M12

M2n M22

Mkn Mk2

Original Data

Manifold

n×k

M11

M21

Mk1

×
Static HD Encoder

k×D
k

Adaptive HD Encoder

n×D

B12

B1k

B21

B22

B2k

BD1

BD2

BDk

 ×
 ×

 ×
cosine

h2 hD

Manifold Projection

 × × ×

Combined
Features

Static HD Encoder

=
D D

B

A

C

Fig. 2. ManiHD encoder consisting of manifold and non-linear HD encoder.

deviation σ = 1) with the same dimensionality to that of the
feature vector. The random vectors {B1,B2, · · · ,BD} can be
generated once offline and then can be used for the rest of
the classification task. After this step, each element hi of a
hypervector Hn has a non-binary value. In HD computing,
binary (bipolar) hypervectors are often used for computation
efficiency. We thus obtain the final encoded hypervector by
binarizing it with a sign function (H = sign(Hn)) where the
sign function assigns all positive hypervector dimensions to ‘1’
and zero/negative dimensions to ‘-1’. The encoded hypervector
stores the information of each original data point with D bits.

B. Manifold Learning

Here, we exploit manifold learning to capture non-linear
structure in data before naively encoding it into high-
dimensional space. Manifold learning is an approach to non-
linear dimensionality reduction, assuming in many data sets,
the number of input features is artificially high. Manifold algo-
rithms are unsupervised [22], [23]; thus, they can learn the data
structure without using any labeled data or predetermined clas-
sifications. Our goal is to combine the capability of manifold
learning with ManiHD static encoder to design an adaptive
and trainable encoder for high-dimensional classification.

Although there are multiple manifold learning methods,
ManiHD requires an approach supporting online and low-
cost transformation for the data. Here, we focus on isomap
(i.e., Isometric mapping) [24], [22]. The goal of isomap
is to find a lower-dimensional of embedding that keeps the
geometric distances between all data points. isomap uses the
nearest search operation and shortest-path graph search to find
a proper projection from original data to a lower dimension.
This projection considers the relation between the features and
generates a new shorter vector between a representation for
learning purposes.

In isomap, the cost of manifold learning increases quadrat-
ically with the number of data points (O[N2]). Therefore,
running manifold learning over the entire training data results
in a significantly slow training process. One of the main goals
of HD computing is to enable fast on-the-fly training on low-
end embedded devices. Therefore, the high computational cost
of manifold learning does not allow us to run it during the
training phase. To address this issue, as we show in Figure 3,

Data Points
@

Original
Space

Data Points
@

HD Space

Static
Encoder

IsomapSampling

Manifold
Projection

ManHD Adaptive Encoder

Learning
Manifold

Fig. 3. ManiHD framework for online trainable encoder.

ManiHD randomly samples a small portion of data points (e.g.,
about 1%) to learn the manifold. The output of the algorithm
is a projection matrix that maps input data to lower dimensions
(”Manifold Projection” shown in Figure 2B).

For all data points (training/test data), ManiHD first passes
each original data ({ f1, f2, · · · , fn}) through a manifold pro-
jection matrix. The result will be a vector with a smaller
dimensionality, { f ′1, f ′2, · · · , f ′k}, where k < n. Next, ManiHD
runs the HD static encoder on the manifold output vector in
order to map it into high-dimensional space. The encoded
data will be binarized and then used for the rest of the
training and inference tasks. As Figure 2C shows, the manifold
projection adds an extra cost to ManiHD static encoder. In
other words, ManiHD adaptive encoder consists of two vector-
matrix multiplication: first, the manifold projection matrix and
second, HD static projection. This extra cost can affect the
efficiency of both training and inference phases, as every test
data also needs to pass through these two matrices. To address
this overhead issue, ManiHD combines manifold and HD
projection matrix into a single matrix. As Figure 3C shows,
we multiply these matrices once after training the manifold
and use a new adaptive HF encoder for encoding the rest of
the data points. Note that this matrix’s size is the same as
the original encoding matrix (n×D); thus, computationally, it
does not add any extra cost to the HD static encoding.

IV. MANIHD ONLINE LEARNING

In real-world learning problems, data are changing over time
as the environment is dynamic. Having a static encoder which
has been pre-trained once does not give flexibility to ManiHD.
In addition, ManiHD requires fast and efficient encoding and
learning in order to enable real-time learning. In this section,
we explain how ManiHD supports both these features.

A. Real-time Encoding Update

In order to design a flexible and dynamic encoder, ManiHD
processes manifold frequently learning over input data. Since
the manifold is unsupervised, it can be processed on the
unlabeled data during the inference. After a pre-defined time,
ManiHD samples from new data points and run manifold
learning on a small portion of data. Next, it updates the HD
encoder based on a new projection matrix. This enables us
to adaptively improve our encoder’s quality, depending on the
input data changes. Since manifold learning is computationally
expensive, we can run the encoding offline and only once after
a while to make sure we do not increase the computational
training cost. In this scenario, ManiHD can use the old
projection matrix to perform a learning task while updating
the projection matrix based on new data. In Section V-E,

0%

20%

40%

60%

80%

100%

B
re

a
k

d
o

w
n

Encoder Learning

1

5

9

13

17

0

1

2

3

4

5

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

C
o

n
s

u
m

p
ti

o
n

Q
u

a
li

ty
 L

o
s

s
 (

%
)

Bit Precision

Quality loss Norm. Energy

Fig. 4. Quality vs efficiency trade-off.

we explore the impact of the frequent manifold update on
ManiHD accuracy and efficiency.

B. ManiHD Encoder Qunatization

In order to enable online learning, ManiHD needs to pro-
vide real-time data encoding and learning. However, ManiHD
encoder is significantly costly to allow real-time learning.
Figure4a shows the breakdown of ManiHD and baseline HD
energy consumption. The results are reported when both
approaches are providing the same classification accuracy.
The baseline HD computing uses D = 10k to provide high
classification accuracy, while ManiHD uses D = 4k to achieve
the same quality of classification. This lower dimensionality
significantly improves ManiHD efficiency during the train-
ing/inference phases, since the costly similarity search per-
forms with higher efficiency. As Figure 4 shows, in ManiHD,
the encoding module takes 72% of the training phase, while
this portion is less than 20% on the baseline HD.

In order to run ManiHD on small and tiny embedded
devices, we need to reduce overall energy consumption. This
means that we need to reduce the computation cost of the
encoding module. To this end, we proposed the idea of using
a quantized projection matrix, where every element can be rep-
resented using n-bits (n << 32). Figure 4b shows the quality
loss of ManiHD for activity recognition application [25] when
the precision of elements in the projection matrix reduces from
32-bits. The right y-axis in Figure 4b shows the normalized
energy consumption of ManiHD encoding during different bit
precisions. The energy results are reported for FPGA. Since
FPGAs have limited DSP resources, they can significantly
speedup the encoding computation when quantization reduces
to fewer bits. This is because FPGAs can use their highly
parallel lookup table resources to parallelize the computation.
However, the lower precision projection matrix results in a
quality loss. For example, quantizing the projection matrix
from 32-bits to 2-bits results in 3.4% quality loss while
improving the energy efficiency by 5.8× times.

We observe that encoding data into higher dimensionality
can compensate for the quality loss from quantization. Even
with increasing dimensionality, the new quantized encoder
has much lower computation cost on FPGA. This is because
FPGAs have enough parallelism/resources for low-precision
computations. In addition, the increase in hypervector di-
mensionality has a negative effect on training and associa-
tive search block. To provide maximum efficiency, we have
optimized the system (devices dimensionality and level of
quantization) such that the encoding and associative search
consume the same amount of energy.

TABLE I
DATASETS (n: FEATURE SIZE, K: NUMBER OF CLASSES)

n K
Data
Size

Train
Size

Test
Size Description

MNIST 784 10 220MB 60,000 10,000 Handwritten Recognition[27]
PECAN 312 3 34MB 22,290 5,574 Smart home power prediction [28]

SPEECH 617 26 19MB 6,238 1,559 Voice recognition [28], [29]
UCIHAR 561 12 10MB 6,213 1,554 Activity recognition(Mobile)[25]
EXTRA 225 4 140MB 146,869 16,343 Phone position recognition[30]

75

80

85

90

95

100

A
c

c
u

ra
c

y
 (

%
)

DNN SVM AdaBoost Baseline HD ManHD (w/o Manifold) ManHDManiHD (no Manifold) ManiHD

Fig. 5. ManiHD classification accuracy vs. the state-of-the-art algorithms.

V. EVALUATION

A. Experimental Setup
The proposed ManiHD framework has been implemented

with both software and hardware support. In software, we
design ManiHD in C++ for model training and verification
while exploiting Scikit-learn library [26] for manifold learning.
In hardware, we used a similar framework as [9] to implement
ManiHD on Kintex-7 FPGA. The FPGA design accelerates the
encoding and learning procedure by parallelizing element-wise
computations for hypervectors. We test ManiHD efficiency and
accuracy on a wide range of classification datasets. Table I
summarizes the details of the datasets.

B. ManiHD Classification Accuracy
Figure 5 compares the classification accuracy with state-of-

the-art classification algorithms, including Deep Neural Net-
work (DNN), Support Vector Machine (SVM), and AdaBoost.
We also compare the accuracy of ManiHD with a state-
of-the-art HD-based classifier published in [19], which uses
a linear encoding method, as the baseline. The results are
reported when all algorithms are performing in a central node
that considers all features given in the dataset. The DNN
models are trained with Tensorflow [31], and we exploited the
Scikit-learn library [26] for the other algorithms. We exploit
the common practice of the grid search to identify the best
hyper-parameters for each model. The accuracy of ManiHD
is reported for D = 4000 dimensions. Our evaluation shows
that ManiHD provides comparable classification accuracy to
the sophisticated non-HD algorithms. As compared to the
baseline HD computing, ManiHD can achieve, on average,
4.7% higher classification accuracy, since our new encoding
method non-linearly maps the data to the high dimensional
space whereas the baseline HD encoding linearly performs
the encoding. ManiHD enhanced with manifold can further
improve the classification accuracy, as it can identify better
features before mapping them into high-dimensional space.
Our evaluation shows that ManiHD can provide, on average,
2.6% (4.8%) higher classification accuracy as compared to
ManiHD without manifold (the baseline HD computing).

C. ManiHD Accuracy-Efficiency
ManiHD efficiency and accuracy depend on a portion of the

training data used for the manifold. From an accuracy point

TABLE II
THE IMPACT OF MANIFOLD DATA ON MANIHD EFFICIENCY

0 0.1% 0.2% 0.5% 1% 1.5% 1%

Dimensions (D) 10k 7.5k 5.5k 4k 3.5k 3.5k 3k
Manifold Overhead 0.00 0.06 0.10 0.46 0.95 1.12 1.58
Training Speedup 1 1.07 1.32 1.52 1.34 1.04 0.86
Inference Speedup 1 1.06 1.38 1.81 2.07 2.01 2.31

of view, using a larger portion of data for manifold results
in improving the classification accuracy. However, it comes
with the overhead of processing manifold data. Note that the
manifold overhead is only on the training phase, while the
inference can get the advantage of the manifold for higher
classification accuracy. Here, we perform an experiment to
show the trade-off in selecting a suitable portion of manifold
learning. Table II shows the impact of partial data training of
manifold in ManiHD accuracy and efficiency. All results are
reported when ManiHD provides the same accuracy.

Increasing a portion of manifold data results in provid-
ing higher classification accuracy. This enables us to reduce
ManiHD dimensionality, as manifold already combines useful
features in original data. As Table II reports, this dimension
reduction can result in more efficient training and inference
phases. However, learning the manifold by itself adds an extra
cost to the ManiHD training phase. This cost depends on the
portion of data used to learn manifold (quadratic relation).
To design an efficient system, we need to ensure that the
manifold’s overhead does not overcome the efficiency coming
from reducing dimensionality. Our evaluation shows that using
0.5% of data for learning manifold results in reducing the
hypervector dimensionality by half. This lower dimensionality
not only compensates the overhead of manifold but also results
in 1.52× and 1.81× improvement in the training and inference
performance, respectively. Further increasing the manifold
data results in saturation in the classification accuracy. In other
words, at the same level of accuracy, ManiHD provides a small
reduction in the dimensionality. In addition, the overhead of
the manifold increases quadratically with the number of data
points. As results in Table II shows, using 1.5% of data for
manifold results in a 14% slower training process. Note that
the overhead of learning manifold is not on the inference
phase. For systems optimized only for inference, a larger
portion of data used to learning manifold results in higher
accuracy or potentially lower dimensionality.

D. ManiHD Efficiency

We compare the computation efficiency of the DNN and
HD computing algorithms. Figure 6 compares the efficiency
of the training and inference procedure for the different
configurations. All results are normalized to the execution time
and energy consumption of DNN. All designs run on the same
FPGA platform. We used DNNWeaver V2.0 [32] for efficient
implementation of the DNN inference, and FPDeep [33] for
NN training on a single FPGA device. FPGA implementations
are optimized to maximize performance by utilizing FPGA
resources. All HD-based approaches are compared when they
provide the same classification accuracy. Therefore, when
ManiHD with manifold works in D = 4k binary, ManiHD
without manifold and the baseline HD work in D= 10k binary
and non-binary representations. All results listed in Figure 6

1

4

7

10

13

16

S
p

e
e
d

u
p

 (
D

N
N

=
1
)

0

1

2

3

4

S
p

e
e
d

u
p

 (
D

N
N

=
1
)

1

6

11

16

21

26

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im
p

ro
v.

 (
D

N
N

=
1
)

0

2

4

6

8

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im
p

ro
v.

 (
D

N
N

=
1
)

(a) Training (b) Inference

ManiHDManiHD (no Manifold)Baseline HD

Fig. 6. ManiHD efficiency during training and inference phases.

are relative to DNN performance and energy efficiency. During
training, ManiHD with manifold (without manifold) achieves,
on average, 12.3× (7.7×) faster and 19.3× (12.0×) more
energy-efficient computation as compared to FPGA-based
DNN implementation, respectively. The high efficiency of
ManiHD in training comes from: (i) ManiHD capability in
creating an initial model that significantly lowers the number
of required retraining iterations. (ii) It eliminates the costly
gradient descent for the model update. In addition, ManiHD
provides 5.4× faster and 3.8× higher energy efficiency as
compared to the baseline HD computing. This efficiency
comes from (i) ManiHD advance encoding method that en-
ables ManiHD to provide maximum accuracy in 0.4 × lower
dimensionality, (ii) ManiHD capability to perform the majority
of training/inference over the binary model.

Figure 6b also compares ManiHD inference efficiency with
DNN and the baseline HD. Although manifold does not affect
the inference efficiency, it enables ManiHD to work on lower
dimensionality, resulting in a higher computation efficiency.
Our evaluation shows that ManiHD with manifold provides
3.2× and 6.3× (4.4× and 4.6×) faster and more efficient
inference as compared to DNN (baseline HD computing).

E. Online Manifold Learning

As we discussed in Section IV-A, in real systems, data
points are highly correlated and have high temporal locality.
This means that the data points are dynamically changing
during time. Therefore, ManiHD with a pre-trained mani-
fold cannot provide suitable accuracy. Here, we design an
experiment to show the advantage of ManiHD for online
learning. We enable online learning on the smart home project,
where the usage of electricity changes during different seasons.
We perform two experiments over this dataset to show the
impact of the adaptive manifold update on ManiHD encoding:
(i) we train ManiHD on the training data (collected from
summer season) and learned manifold by sampling 4% of
training data. (ii) we train ManiHD on the same training
data, but we frequently update the manifold data during the
inference. In each season, we sample 1% of data points
and update the manifold and ManiHD encoder accordingly.
Note that both static and adaptive manifold updates have
the same computational overhead as they process a total of
4% of data. Table III reports the classification accuracy of
ManiHD in these two configurations during different time
steps. Our evaluation shows that ManiHD using static manifold

TABLE III
IMPACT OF STATIC AND ADAPTIVE MANIFOLD LEARNING ON MANIHD

CLASSIFICATION ACCURACY

Summer Fall Winter Spring AVERAGE

Static Design 95.2% 92.7% 84.7% 86.1% 89.7%
Adaptive Design 94.4% 95.2% 93.6% 92.6% 94.0%

provides high classification accuracy in summer, while in other
seasons, the classification accuracy significantly drops. This
is because the manifold has been learned using summer data.
However, ManiHD updating the manifold adaptively results in
providing high accuracy in every season. Our evaluation shows
that ManiHD using adaptive manifold provides 4.3% higher
accuracy as compared to ManiHD with the static manifold.

F. ManiHD Encoding Quantization

As we discussed in Section IV-B, the ManiHD encoding
module dominates the entire training/inference cost. In order
to reduce the overall ManiHD efficiency, we propose the
idea of encoding quantization. Our approach represents each
element of the projection matrix with n-bits, where n << 32.
However, quantization reduces ManiHD classification accu-
racy. ManiHD can compensate for the quality loss caused
by quantization with increasing the hypervector dimensions.
Figure 7 shows the number of required ManiHD dimen-
sionality during different levels of encoder quantizations. As
this graph shows, with no quantization provides maximum
accuracy using D = 4k while quantizing ManiHD encoder
into 2-bits (3-bits) precision results in providing the maximum
accuracy with D = 7.1k (D = 5.7k) dimensions.

Although quantizing the projection matrix reduces the en-
coding cost, it increases dimensionality, directly impacting
training, and inference cost. Figure 7 shows the breakdown of
ManiHD energy consumption during the training phase. The
energy values are reported for the encoding and training mod-
ules. As Figure 7 shows, the encoding module takes 72% the
energy consumption over baseline ManiHD (Non-quantized).
Quantizing the encoder to lower precision increases the train-
ing cost (higher dimensionality) while reducing the encoding
cost. The optimized system for learning (encoding and train-
ing phase) provides maximum efficiency. This optimization
depends on the underlying hardware. Since we select FPGA
as hardware implementation, our goal is to select the best
quantization that minimizes the total FPGA energy, which
includes both encoding and training. Our evaluation shows
that 3-bits quantization balances the energy consumption of the
encoding and training phase, resulting in maximum efficiency.

VI. CONCLUSION

In this paper, we proposed ManiHD that supports adaptive
and trainable encoder for efficient learning in high-dimensional
space. ManiHD explicitly considers non-linear interactions be-
tween the features during the encoding. This enables ManiHD
to provide maximum learning accuracy in much lower dimen-
sionality. ManiHD also enables online learning by sampling
data points and capturing the essential features in an unsuper-
vised manner. Our evaluation shows that ManiHD provides, on
average, 12.3× faster and 19.3× more energy-efficient training
as compared to state-of-the-art learning algorithms.

0

2000

4000

6000

8000

10000

D
im

e
n

s
io

n
a

li
ty

 (
D

)

Encoder Precisions

0% Loss 1% Loss 2% Loss

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

Encoder Precisions

Encoding Training

Fig. 7. Impact of the encoder quantization on (a) ManiHD dimensionality
that provides a certain accuracy, (b) breakdown of the energy consumption in
the encoding and training phases.

ACKNOWLEDGMENT
This work was partially supported by Semiconductor Re-

search Corporation (SRC) Task No. 2988.001, National Sci-
ence Foundation grant #2019511, and Louisiana Board of
Regents Support Fund LEQSF(2020-23)-RD-A-26. Mohsen
Imani and Yeseong Kim are co-corresponding authors of the
paper.

REFERENCES

[1] M. Shafique and Nothers, “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” D&T, vol. 37, no. 2, pp. 30–57, 2020.

[2] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network training
with high precision,” in ISCA, pp. 802–815, IEEE, 2019.

[3] J. Choi et al., “Pact: Parameterized clipping activation for quantized neural networks,”
arXiv preprint arXiv:1805.06085, 2018.

[4] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Computa-
tion, vol. 1, no. 2, pp. 139–159, 2009.

[5] M. Imani et al., “A framework for collaborative learning in secure high-dimensional
space,” in CLOUD, pp. 435–446, IEEE, 2019.

[6] M. Imani et al., “Bric: Locality-based encoding for energy-efficient brain-inspired
hyperdimensional computing,” in DAC, pp. 1–6, 2019.

[7] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired hyper-
dimensional computing,” in ISLPED, pp. 64–69, ACM, 2016.

[8] M. Imani et al., “Quanthd: A quantization framework for hyperdimensional comput-
ing,” TCAD, 2019.

[9] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing hyperdi-
mensional computing,” in FPGA, pp. 53–62, 2019.

[10] S. Salamat et al., “Accelerating hyperdimensional computing on fpgas by exploiting
computational reuse,” TC, 2020.

[11] Y. Kim et al., “Geniehd: Efficient dna pattern matching accelerator using hyperdimen-
sional computing,” in DATE, IEEE, 2020.

[12] B. Khaleghi et al., “Prive-hd: Privacy-preserved hyperdimensional computing,” arXiv
preprint arXiv:2005.06716, 2020.

[13] M. Imani et al., “Revisiting hyperdimensional learning for fpga and low-power
architectures,” in HPCA, IEEE, 2021.

[14] M. Imani et al., “Sparsehd: Algorithm-hardware co-optimization for efficient high-
dimensional computing,” in FCCM, pp. 190–198, IEEE, 2019.

[15] B. Khaleghi et al., “tiny-HD: Ultra-Efficient Hyperdimensional Computing Engine for
IoT Applications,” in DATE, IEEE, 2021.

[16] S. Gupta et al., “Thrifty: Training with hyperdimensional computing across flash
hierarchy,” in ICCAD, pp. 1–9, IEEE, 2020.

[17] A. Moin et al., “Analysis of contraction effort level in emg-based gesture recognition
using hyperdimensional computing,” in BioCAS, pp. 1–4, IEEE, 2019.

[18] A. Mitrokhin et al., “Learning sensorimotor control with neuromorphic sensors:
Toward hyperdimensional active perception,” Science Robotics, vol. 4, no. 30,
p. eaaw6736, 2019.

[19] M. Imani et al., “Hierarchical hyperdimensional computing for energy efficient classi-
fication,” in DAC, p. 108, ACM, 2018.

[20] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in NIPS,
pp. 1177–1184, 2008.

[21] B. Schölkopf, “The kernel trick for distances,” in NIPS, pp. 301–307, 2001.
[22] R. Abraham et al., Manifolds, tensor analysis, and applications, vol. 75. Springer

Science & Business Media, 2012.
[23] Y. Zhao et al., “Multi-view manifold learning with locality alignment,” Pattern

Recognition, vol. 78, pp. 154–166, 2018.
[24] Z. Zhang et al., “M-isomap: Orthogonal constrained marginal isomap for nonlinear

dimensionality reduction,” SMC, vol. 43, no. 1, pp. 180–191, 2012.
[25] D. Anguita et al., “Human activity recognition on smartphones using a multiclass

hardware-friendly support vector machine,” in AAL, pp. 216–223, Springer, 2012.
[26] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” JMLR, vol. 12, no. Oct,

pp. 2825–2830, 2011.
[27] Y. LeCun et al., “Gradient-based learning applied to document recognition,” Proceed-

ings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[28] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[29] M. S. Razlighi et al., “Looknn: Neural network with no multiplication,” in DATE,

pp. 1775–1780, IEEE, 2017.
[30] Y. Vaizman et al., “Recognizing detailed human context in the wild from smartphones

and smartwatches,” IEEE Pervasive Computing, vol. 16, no. 4, pp. 62–74, 2017.
[31] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous dis-

tributed systems,” arXiv preprint arXiv:1603.04467, 2016.
[32] H. Sharma et al., “From high-level deep neural models to fpgas,” in MICRO, p. 17,

IEEE, 2016.
[33] T. Geng et al., “Fpdeep: Acceleration and load balancing of cnn training on fpga

clusters,” in FCCM, pp. 81–84, IEEE, 2018.

