
Late Breaking Results: A Fast and Low-Cost Comparison-Free
Sorting Engine with Unary Computing

Amir Hossein Jalilvand∗, Seyedeh Newsha Estiri∗, Samaneh Naderi+, M. Hassan Najafi∗, and Mohsen Imani†
∗University of Louisiana at Lafayette, +Iran University of Science and Technology, †University of California Irvine

Corresponding Author: najafi@louisiana.edu

ABSTRACT
Hardware-efficient implementation of sorting operation is cru-
cial for numerous applications, particularly when fast and energy-
efficient sorting of data is desired. Unary computing has been used
for low-cost hardware sorting. This work proposes a comparison-
free unary sorting engine by iteratively finding maximum values.
Synthesis results show up to 81% reduction in hardware area com-
pared to the state-of-the-art unary sorting design. By processing
right-aligned unary bit-streams, our unary sorter is able to sort
many inputs in fewer clock cycles.

1 INTRODUCTION
Sorting is essential for numerous applications, including image pro-
cessing, artificial intelligence, task scheduling, scientific computing,
etc. For high-performance sorting, sorting is performed in hardware
with application-specified integrated circuits or field-programmable
gate arrays. Hardware-based sorting is fundamentally different
from software-based sorting such as QuickSort, MergeSort, Bubble-
Sort, etc. In software sorting, the order of comparisons depends on
data. But, in hardware sorting, this order is fixed and is independent
of data. The number of sorting operations can vary significantly
from application to application. For example, in image processing
applications, thousands of inputs may need to be sorted. Therefore,
an optimal hardware implementation of sorting operation is of
great importance.

There is a relatively large body of work for hardware-based
sorting [3]. The ultimate goal is to sort data with minimum latency
and hardware cost. One of the most popular approaches is Batcher’s
sorting [3]. Batcher wires up a network of compare-and-swap (CAS)
units, which can be pipelined easily. The hardware cost and the
power consumption of Batcher’s network depend on the number
of CAS blocks and the cost of each CAS block. Each CAS block
compares two input values and swaps the values at the output if
needed. The total number of CAS blocks in an 𝑁 -input Batcher’s
sorting is 𝑁 ×𝑙𝑜𝑔2 (𝑁 ) × (𝑙𝑜𝑔2 (𝑁 ) + 1)/4. Thus, 8-, 16-, 32-, and 256-
input Batcher networks require 24, 80, 240, and 4,608 CAS blocks,
respectively [2].

Batcher’s sorting is conventionally implemented based on the
weighted binary representation. Binary representation is compact;
however, computation on this representation is relatively complex.
The complexity increases by increasing the data-width. Increasing
the complexity affects the cost of hardware implementation, latency,
power, and hence, energy consumption. Najafi et al. proposed an
alternative low-cost hardware design for Batcher’s networks using
unary computing [5]. In unary computing, numbers are encoded
uniformly by a sequence of one value (say 1) followed by a sequence
of the other value (say 0) with the data value determined by the
fraction of 1’s in the sequence. For example, 11000 is a left-aligned
unary sequence (i.e.,bit-stream) representing 0.4. The minimum and
the maximum value functions, the essential functions in building
Batcher sorting networks, can be realized efficiently in the unary
domain using simple bit-wise AND and OR operations. An area and
power saving of up to 92% is reported in [5] for the unary Batcher
sorting design compared to the conventional binary counterpart.

The hardware design of a comparison-free sorting engine is
proposed in [4]. Their design sorts 𝑁 data elements in nearly 𝑁
clock cycles while recognizing the maximum number in the 1st

In[1]

In[2]

In[n]

Sorting 
Engine  

Enable

A
d

d
re

ss
 o

f 
la

rg
es

t 
el

em
e

n
t

..
.

C
o

n
tr

o
lle

r

Out[1]

Out[2]

Out[n]

..
.

So
rt

e
d

 d
at

a

In
p

u
t 

re
gi

st
er

Multiplexer Data

...

A
d

d
re

ss

Detection 
Signal (ds)

Fig. 1: High-level Architecture of Comparison-Free Unary
Sorter.

clock cycle. Their sorting engine is constructed by employing 𝑁
symmetric cascaded blocks, and sorting operations are performed
in a pipelined fashion. A comparison-free sorting algorithm is also
introduced in [1]. This design can be applied to any data distribution
with no significant adjustment. The number of required cycles falls
in the range of 2𝑁 to 2𝑁 + 2𝐾 − 1 , where 𝐾 is the bit-width of data
and 𝑁 is the number of input data.

This work proposes a fast and low-cost comparison-free sorting
architecture based on unary computing. We iteratively find the
index of the maximum value by converting data to left-aligned
unary bit-streams and finding the first “1” in the generated bit-
streams. Our synthesis results show a significant area reduction, up
to 81%, compared to the state-of-the-art unary sorting design of [5]
and up to 45% compared to the comparison-free design of [4]. The
proposed sorter sorts many inputs in fewer clock cycles compared
to the unary design of [5].

2 COMPARISON-FREE UNARY SORTER
Here we describe our proposed comparison-free unary sorting de-
sign. The high-level architecture is shown in Fig. 1. The architecture
includes a sorting engine, a controller, and a multiplexer. The design
reads unsorted data from the input registers and performs sorting
by finding the address of the maximum number at each step. Fig. 2
shows the proposed sorting engine. In the first step, the sorting
engine converts data to right-alighted unary bit-streams and re-
turns the index of the bit-stream corresponding to the maximum
value. This is done by finding the bit-stream that produces the first
1. Consider a set of inputs, 𝑝 1 = 0.4, 𝑝2 = 0.2, 𝑝3 = 0 .8, 𝑝4 = 0.6,
𝑝5 = 0 . 2, and 𝑝6 = 0.8. A right-aligned unary representation for
these numbers is 𝑝1 = 00011, 𝑝2 = 00001, 𝑝3 = 01111, 𝑝4 = 00111,
𝑝5 = 00001 and 𝑝6 = 01111. In the first cycle, the shared down
counter starts counting down and a zero bit is generated for all
inputs. In the second cycle, a one is generated for the third (𝑝3 )
and the last (𝑝6) input. This enables the flip-flops corresponding to
the third and last inputs. When these flip-flops are activated, the
detection signal (ds), which is the output of an addition unit, will
have a value of two. ds = 2 means that the next maximum value
is not a single number but two numbers with the same value. We
utilize a priority encoder to obtain the memory address of one of
the maximum values in the second cycle. Next, ds is passed to the
controller. The controller’s finite state machine is shown in Fig. 3.
When 𝑑𝑠 = 2, the state changes from "Find the index" to "Put the
results." The state does not change until the two numbers are in

DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…$15.00
https://doi.org/10.1145/3489517.3530615

1390

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530615&domain=pdf&date_stamp=2022-08-23


A
d

d
it

io
n

‘1’

..
.

..
.

Sh
ar

e
d

 D
o

w
n

 C
o

u
n

te
r

In[1]En

>

..
.

R
ig

h
t-

al
ig

n
e

d
 U

n
ar

y 
N

u
m

b
e

r 
G

e
n

e
ra

to
r 

 

In[n]

‘1’

>

P
ri

o
ri

ty
 E

n
co

d
er

..
.

Clk

11000

11110

01000

00010

10000

00100

Largest Element Detector  

Address of 
Largest 
Element 

..
. Detection 

Signal (ds)

FF

FF

Fig. 2: Proposed Unary Sorting Engine.

Find the 
index

Enable =1

Put the 
results
Enable =0, 

CNTEN = 1

ds ==0

ds >0

Down 
CounterCNTEN

X==ds
Up 

Counter
CNTEN

Reset

X!=ds 

X

D
o

n
e

Done ==1

A
d

d
re

ss

d
s

Fig. 3: Proposed Controller.

the output. Then, the controller enables a down counter that gives
the address of the numbers found in the "Put the result" state. A
multiplexer is also used to get the address of the maximum values
from the sorting engine and put the weighted-binary value of the
maximum on the output registers.

3 DESIGN EVALUATION
We developed a VHDL description of the proposed comparison-
free sorter and synthesized it using the Synopsys Design Compiler
O-2018.06-SP2 with a 45-nm standard cell library. We compare our
unary sorting design with the unary design of the Batcher networks
proposed in [5] and also the comparison-free sorter developed
in [4]. Similar to our method, the design of [4] finds the index of the
maximum value. We report the hardware cost for three different
data widths of 8, 16, and 32 bits. Table 1 reports the synthesis results
for all implemented designs in terms of hardware area footprint,
critical path latency, and power consumption at maximum working
frequency. As the results show, the proposed design achieves up
to 81% and 46% area saving compared to the designs of [5] and [4],
respectively.

The downside of unary computing designs is long computation
time, which translates to high energy consumption. Like Bubble-
sort, our proposed design finds themaximum values and sends them
out iteratively. Contrary to prior unary designs that process 𝐾-bit
data in 2𝐾 clock cycles, our unary sorter finds the maximum value
as soon as it sees the first 1. This can reduce the number of clock
cycles to sort many inputs. To find the latency and energy saving
of our approach in finding the maximum and minimum values, we
developed a MATLAB program to find the average number of clock
cycles for finding the maximum and minimum values in 1000 sets
of random data. Table 2 compares the average number of clock
cycles for our method and the method of [5] when processing 8-bit
precision data. As can be seen, our proposed architecture can find
the maximum value, on average, after three cycles for the 256-input
design. This provides a significant energy saving in finding the
maximum value. The amount of energy consumption can be found

Table 1: Synthesis Results of the Implemented Designs.

Input 𝑀
Area
(`𝑚2)

Critical Path
(𝑛𝑠)

Power (𝑚𝑊 )
@ Max freq.

[4] [5] Prop. [4] [5] Prop. [4] [5] Prop.

8
8 1,752 2,659 1,536 1.33 0.39 0.22 0.23 3.29 4.40
16 2,463 5,024 2,113 2.42 0.42 0.22 0.14 5.59 5.91
32 4,458 9,916 4,243 4.28 0.49 0.22 0.10 10.1 8.29

16
8 3,155 5,834 2,282 1.63 0.4 0.22 0.35 5.3 5.14
16 5,169 10,323 3,939 2.98 0.44 0.22 0.22 8.94 6.44
32 9,630 18,065 7,357 5.22 0.5 0.22 0.18 15.9 9.86

32
8 5,546 13,095 4,079 2.02 0.41 0.22 0.51 8.4 5.68
16 9,262 17,029 7,155 3.92 0.46 0.23 0.31 13.8 7.54
32 19,282 29,682 12,268 6.07 0.5 0.23 0.29 25.4 12.24

64
8 10,093 25,248 7,498 2.42 0.44 0.24 0.80 13.4 6.06
16 19,003 37,726 11,350 4.02 0.47 0.24 0.58 22.5 9.13
32 37,031 63,144 21,210 6.92 0.5 0.25 0.50 41.2 15.34

128
8 19,417 59,579 13,039 2.73 0.47 0.24 1.34 21.4 10.41
16 37,128 84,646 22,615 4.73 0.5 0.24 0.98 37.1 16.10
32 84,657 134,746 45,866 8.04 0.52 0.25 1.07 69.1 29.31

256
8 39,155 140,006 25,614 2.93 0.49 0.24 2.48 36.5 16.40
16 74,170 189,903 42,616 5.62 0.51 0.24 1.68 62.1 27.01
32 103,622 289,723 82,694 10.02 0.54 0.25 1.14 113 51.76

Table 2: Latency and Energy Consumption Comparison of
the Proposed and Prior Unary Design [5].

Input Required Cycle Energy (𝑝 𝑗 )
Prior

min/max
Prop.
min

Prop.
max

Prior
min/max

Prop.
min

Prop.
max

8 256 228.8 29.1 328.47 221.61 28.25
6 256 241.5 16.0 542.72 273.18 18.16
32 256 248.3 9.06 881.66 310.31 11.32
64 256 252.4 5.21 1,509.38 367.09 7.58
128 256 254.3 3.55 2,575.85 635.54 8.87
256 256 255.4 2.56 4,578.56 1,005.33 10.08

by finding the product of the critical path latency, the number of
clock cycles, and the power consumption of the design.

4 CONCLUSION
This work proposed a fast and low-cost comparison-free sorting
design based on unary computing. The proposed design generates
right-aligned unary bit-streams to speed up finding the bit-stream
with maximum value. The sorter finds duplicate numbers by using
a detection signal. A controller returns the memory address of the
found maximum values. Our proposed design can decrease the
number of clock cycles for sorting many input data. The hardware
cost is further significantly reduced compared to prior unary and
comparison-free binary sorting designs.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
(NSF) grants #2127780 and #2019511, Semiconductor Research Cor-
poration (SRC) Task #2988.001, Office of Naval Research, grants
#N00014-21-1-2225 and #N00014-22-1-2067, Air Force Office of Sci-
entific Research, the Louisiana Board of Regents Support Fund
#LEQSF(2020-23)-RD-A-26, and a generous gift from Cisco.

REFERENCES
[1] S. Abdel-Hafeez and A. Gordon-Ross. An Efficient O(N) Comparison-Free Sorting

Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(6):1930–1942, jun 2017.

[2] F. Amin, H. J. Duwe III, M. J. Schulte, and K. Compton. Modular design of high-
throughput, low-latency sorting units. IEEE Transactions on Computers, 62(7):1389–
1402, 2013.

[3] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, spring joint computer conference on - AFIPS ’68 (Spring), page 307,
New York, New York, USA, 1968. ACM Press.

[4] S. Ghosh, S. Dasgupta, and S. Saha Ray. A Comparison-free Hardware Sorting
Engine. Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI,
2019-July:586–591, 2019.

[5] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. Low-Cost Sorting Network
Circuits Using Unary Processing. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(8):1471–1480, aug 2018.

1391


	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     2
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





