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ABSTRACT

Precise crop yield predictions are of national importance for en-

suring food security and sustainable agricultural practices. While

AI-for-science approaches have exhibited promising achievements

in solving many scientific problems such as drug discovery, precip-

itation nowcasting, etc., the development of deep learning models

for predicting crop yields is constantly hindered by the lack of an

open and large-scale deep learning-ready dataset with multiple

modalities to accommodate sufficient information. To remedy this,

we introduce the CropNet dataset, the first terabyte-sized, publicly

available, and multi-modal dataset specifically targeting climate

change-aware crop yield predictions for the contiguous United

States (U.S.) continent at the county level. Our CropNet dataset

is composed of three modalities of data, i.e., Sentinel-2 Imagery,

WRF-HRRR Computed Dataset, and USDA Crop Dataset, for over

2200 U.S. counties spanning 6 years (2017-2022), expected to fa-

cilitate researchers in developing versatile deep learning models

for timely and precisely predicting crop yields at the county-level,

by accounting for the effects of both short-term growing season

weather variations and long-term climate change on crop yields.

Besides, we develop the CropNet package, offering three types

of APIs, for facilitating researchers in downloading the CropNet

data on the fly over the time and region of interest, and flexibly

building their deep learning models for accurate crop yield predic-

tions. Extensive experiments have been conducted on our CropNet

dataset via employing various types of deep learning solutions,

with the results validating the general applicability and the efficacy

of the CropNet dataset in climate change-aware crop yield predic-

tions. We have officially released our CropNet dataset on Hugging

Face Datasets https://huggingface.co/datasets/CropNet/CropNet

and our CropNet package on the Python Package Index (PyPI)

https://pypi.org/project/cropnet. Code and tutorials are available

at https://github.com/fudong03/CropNet.
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1 INTRODUCTION

Precise crop yield prediction is essential for early agricultural plan-

ning [22], timely management policy adjustment [52], informed

financial decision making [1], and national food security [44]. Re-

cent advancements in deep neural networks (DNNs) have achieved

impressive performance across various domains [6, 7, 11, 13, 16, 20,

26, 30, 33, 34, 38, 41, 43, 46, 50, 54, 58, 63, 66]. Building upon these

advancements, plenty of studies have employed spatial-temporal

DNNs [17, 27, 29, 31, 35, 39, 40, 42, 60, 61, 64] to predict crop yields

with increased timeliness and precision [8, 12, 14, 22, 23, 32, 62].

However, they often applied their personally curated and limit-

sized datasets, with somewhat mediocre prediction performance.

There is an urgent need for new large-scale and deep learning-ready

datasets tailored specifically for wide use in crop yield predictions.

Recently, some studies [2, 5, 9, 10, 14, 19, 28, 45, 51, 55] have

developed open and large-scale satellite imagery (or meteorologi-

cal parameter) datasets, flexible for being adopted to agricultural-

related tasks, e.g., crop type classification [51]. Unfortunately, two

limitations impede us from applying them directly to crop yield

predictions in general. First, they lack ground-truth crop yield infor-

mation, making them unsuitable for crop yield predictions. Second,

they provide only onemodality of data (i.e., either satellite images or

meteorological parameters), while accurate crop yield predictions

often need to track the crop growth and capture the meteorological

weather variation effects on crop yields simultaneously, calling for

multiple modalities of data. To date, the development of a large-

scale dataset with multiple modalities, targeting specifically for

county-level crop yield predictions remains open and challenging.

In this work, we aim to craft such a dataset, called CropNet,

the first terabyte-sized and publicly available dataset with multiple

5375



KDD ’24, August 25ś29, 2024, Barcelona, Spain Fudong Lin et al.

WRF-HRRR 

Computed Dataset

USDA 

Crop Dataset

Sentinel-2 

Imagery

Figure 1: Our CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset,

and USDA Crop Dataset, providing satellite images, meteorological parameters, and county-level crop yield information,

respectively.

Table 1: Dataset comparison

Dataset Size (GB) Data Modality

SEVIR [55] 970 satellite imagery

DENETHOR [25] 254 satellite imagery

PASTIS [14] 29 satellite imagery

WorldStrat [9] 107 satellite imagery

RainNet [5] 360 satellite imagery

ENS-10 [2] 3072 meteorological parameters

Our CropNet dataset 2362

satellite imagery

meteorological parameters

crop information

modalities, designed specifically for county-level crop yield predic-

tions across the United States (U.S.) continent. As shown in Figure 1,

the CropNet dataset is composed of three modalities of data, i.e.,

Sentinel-2 Imagery,WRF-HRRRComputedDataset, and USDACrop

Dataset, covering a total of 2291 U.S. counties from 2017 to 2022.

In particular, the Sentinel-2 Imagery, acquired from the Sentinel-2

mission [47], provides two categories of satellite images, i.e., agri-

culture imagery (AG) and normalized difference vegetation index

(NDVI), for precisely monitoring the crop growth on the ground.

The WRF-HRRR Computed Dataset, obtained from the WRF-HRRR

model [21], offers daily and monthly meteorological parameters,

accounting respectively for the short-term weather variations and

the long-term climate change. The USDA Crop Dataset, sourced

from the USDA Quick Statistic website [53], contains annual crop

yield information for four major crops, i.e., corn, cotton, soybean,

and winter wheat, grown on the contiguous U.S. continent, serving

as the ground-truth label for crop yield prediction tasks. Table 1

summarizes the dataset comparison between our CropNet dataset

and pertinent datasets.

Since the data in our CropNet dataset are obtained from different

data sources, we propose a novel data alignment solution to make

Sentinel-2 Imagery, WRF-HRRR data, and USDA crop yield data

spatially and temporally aligned. Meanwhile, three modalities of

data are stored in carefully designed file formats, for improving

the accessibility, readability, and storage efficiency of our CropNet

dataset. The key advantage of our CropNet dataset is to facilitate

researchers in developing crop yield prediction models that are

aware of climate change, by taking into account the effects of (1)

the short-term weather variations, governed by daily parameters

during the growing season, and (2) the long-term climate change,

governed by monthly historical weather variations, on crop growth.

Furthermore, we have developed the CropNet package, including

three types of APIs, expected to assist researchers and practition-

ers in (1) dynamically downloading the CropNet data based on

the specific time and region of interest and (2) flexibly building

climate change-aware deep learning models for accurate crop yield

predictions at the county level.

Our experimental results validate that the CropNet dataset can

be easily adopted by the prominent deep learning models, such

as Long Short-Term Memory (LSTM)-based, Convolutional Neural

Network (CNN)-based, Graph Neural Network [24] (GNN)-based,

and Vision Transformer [11] (ViT)-based models, for timely and

precise crop yield predictions. Additionally, our CropNet dataset

demonstrates its versatile applicability to boost the generalization

capabilities of deep neural networks (DNNs), thanks to its abundant

visual satellite imagery and numerical meteorological data.

2 DATA SOURCES

Our CropNet dataset is crafted from three different data sources, as

listed below.

Sentinel-2 Mission. The Sentinel-2 mission [47], launched in 2015,

serves as an essential earth observation endeavor. With its 13 spec-

tral bands and high revisit frequency of 5 days, the Sentinel-2 mis-

sion provides wide-swath, high-resolution, multi-spectral satellite

images for a wide range of applications, such as climate change,

agricultural monitoring, etc.

WRF-HRRR Model [21]. The High-Resolution Rapid Refresh

(HRRR) is a Weather Research & Forecasting Model (WRF)-based

forecast modeling system, which hourly forecasts weather parame-

ters for the whole United States continent with a spatial resolution

of 3km. We take the HRRR assimilated results archived in the Uni-

versity of Utah for use, which provides several crop growth-related

parameters, e.g., temperature, precipitation, wind speed, relative

humidity, radiation, etc., beginning with July 2016.
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USDA. The United States Department of Agriculture (USDA) [53]

provides annual crop information for major crops grown in the U.S.,

including corn, cotton, soybeans, wheat, etc., at the county level.

The statistical data include the planted areas, the harvested areas,

the production, and the yield for each type of crop, dating back to

1850 at the earliest.

3 OUR CROPNET DATESET

3.1 Motivation

The large-scale data with multiple modalities comprising satellite

images, numerical meteorological weather data, and crop yield

statistic data, are essential for tracking crop growth and correlating

the weather variation’s effects on crop yields, to be used for timely

and precisely predicting crop yields at the county level. To date,

such an open and large-scale dataset intended for county-level crop

yield prediction is still absent. In this benchmark article, we plan

to design and publish such an open and large-scale dataset, called

CropNet, with multiple modalities, consisting of visual satellite im-

ages, numerical meteorological parameters, and crop yield statistic

data, across the U.S. continent. Notably, not all U.S. counties are

suitable for crop planting, so our dataset only includes the data

corresponding to 2291 U.S. counties over 3143 counties in total

(see Figure 2 for its geographic distribution). Such a multi-modal

dataset is valuable for researchers and practitioners to design and

test various deep learning models for crop yield predictions, by

taking into account the effects of both short-term growing season

weather variations and long-term climate change on crop yields.

3.2 Overview of Our CropNet Dataset

Our CropNet dataset is composed of three modalities of data, i.e.,

Sentinel-2 Imagery,WRF-HRRRComputedDataset, and USDACrop

Dataset, spanning from 2017 to 2022 (i.e., 6 years) across 2291 U.S.

counties. Figure 2 shows the geographic distribution of our dataset.

Since crop planting is highly geography-dependent, Figure 2 also

provides the number of counties corresponding to each crop type

in the USDA Crop Dataset (see the rightmost bar chart). Notably,

four of the most popular crops, i.e., corn, cotton, soybeans, and

winter wheat, are included in our CropNet dataset, with satellite

imagery and the meteorological data covering all 2291 counties.

Table 2 overviews our CropNet dataset. Its total size is 2362.6 GB,

with 2326.7 GB of visual data for Sentinel-2 Imagery, 35.5 GB of

numerical data for WRF-HRRR Computed Dataset, and 2.3MB of

numerical data for USDA Crop Dataset. Specifically, Sentinel-2 Im-

agery contains two types of satellite images (i.e., AG and NDVI),

both with a spatial resolution of around 40meters (covering an area

of 9x9 km with 224x224 pixels) as well as a revisit frequency of 14

days. Figures 3a (or 3b) and 3c (or 3d) respectively depict examples

of AG and NDVI images in the summer (or winter). TheWRF-HRRR

Computed Dataset provides daily (or monthly) meteorological pa-

rameters gridded at the spatial resolution of 9 km in a one-day (or

one-month) interval. Figures 4a and 4b visualize the temperature in

the WRF-HRRR Computed Dataset for the summer and the winter,

respectively. The USDA Dataset offers crop information for four

types of crops each on the county-level basis, with a temporal reso-

lution of one year. Figure 5 shows the example for the USDA Crop

Dataset, depicting 2022 soybeans yields across the U.S. continent.

3.3 Data Collection and Preparation

Sentinel-2 Imagery.Weutilize the Sentinel Hub ProcessingAPI [48]

to acquire satellite images from the Sentinel-2 mission at a pro-

cessing level of Sentinel-2 L1C, with a maximum allowable cloud

coverage of 20%, three spectral bands (i.e., B02, B08, and B11) for AG

images and two bands (i.e., B04 and B08) for NDVI images. Satellite

images are obtained at the revisit frequency of 14 days instead of the

original highest revisit frequency of 5 days. The reason is that the

5-day revisit frequency under our cloud coverage setting results in

a large number of duplicate satellite images, according to our empir-

ical study (refer to Appendix A.1 for details). As precisely tracking

the crop growth on the ground requires high-spatial-resolution

satellite images, we partition a county into multiple grids at the

resolution of 9x9 km, with each grid corresponding to one satellite

image. Figures 6a and 6b illustrates an example of county parti-

tioning (refer to Appendix A.2 for more details). The downloaded

satellite images for one U.S. state (including all counties therein)

spanning one season are stored in one Hierarchical Data Format

(HDF5) file. Three reasons motivate us to employ the HDF5 file

format. First, it can significantly save the hard disk space. That is,

the collected satellite images with a total of 4562.2 GB shrank to

2326.7 GB (i.e., 0.51x smaller space occupancy) in the HDF5 file.

This can facilitate researchers and practitioners for lower hard disk

space requirements and faster data retrieval. Second, it allows for

storing data in the form of multidimensional arrays, making satel-

lite images easy to access. The HDF5 file for Sentinel-2 Imagery is

organized in the form of (𝐹,𝑇 ,𝐺, 𝐻,𝑊 ,𝐶), where 𝐹 represents the

FIPS code (i.e., the unique number for each U.S. county) used for

retrieving one county’s data, 𝑇 indicates the number of temporal

data in a 14-day interval with respect to one season, 𝐺 represents

the number of high-resolution grids for a county, and (𝐻,𝑊 ,𝐶)

are the width, height, and channel numbers for the satellite image.

Third, it can store descriptive information for the satellite image,

such as its revisit day, the latitude and longitude information it

represents, among others.

WRF-HRRR Computed Dataset. The WRF-HRRR Computed

Dataset is sourced from the WRF-HRRR model [21], which pro-

duces GRID files on the hourly basis, containing meteorological

parameters over the contiguous U.S. continent at a spatial resolu-

tion of 3x3 km. To lift the domain knowledge required for using

the WRF-HRRR data, our CropNet dataset includes 9 carefully cho-

sen and crop growth-relevant meteorological parameters, with 6

parameters obtained directly from the WRF-HRRR model, i.e., aver-

aged temperature, precipitation, relative humidity, wind gust, wind

speed, downward shortwave radiation flux, and other 3 parameters

computed by ourselves, i.e., maximal temperature, minimal tem-

perature, vapor pressure deficit (VPD). Table 3 presents details of

meteorological parameters in the WRF-HRRR Computed Dataset.

Notably, VPD describes the difference between the amount of mois-

ture in the air and the maximum amount of moisture the air can

hold at a specific temperature, which is an important concept in un-

derstanding the environmental conditions that affect plant growth

and transpiration. Given two meteorological parameters, i.e., the

temperature measured in Kelvin 𝑇𝐾 and the relative humidity 𝑅𝐻 ,
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Figure 2: Geographic distribution of our CropNet dataset across 2291 U.S. counties. The rightmost bar chart provides the number

of counties corresponding to each of the four crop types included in the USDA Crop Dataset.

Table 2: Overview of our CropNet dataset

Data Modality Size Spatial Resolution Temporal Resolution Content

Sentinel-2 Imagery 2326.7 GB 40 m 14 days satellite images with 224x224 pixels
WRF-HRRR Computed Dataset 35.5 GB 9x9 km 1 day or 1 month weather parameters

USDA Crop Dataset 2.3 MB county-level 1 year crop information

(a) AG images in the summer (b) AG images in the winter

(c) NDVI images in the summer (d) NDVI images in the winter

Figure 3: Examples of agriculture imagery (AG, see 3a and 3b) and normalized difference vegetation index (NDVI, see 3c and 3d)

in Sentinel-2 Imagery.

VPD is calculated by the following equations:

𝑇𝐶 = 𝑇𝐾 − 273.15,

𝑉 𝑃sat =
610.7 × 10(7.5×𝑇𝐶 )/(237.3+𝑇𝐶 )

1000
,

𝑉 𝑃air = 𝑉𝑃sat ×
𝑅𝐻

100
,

𝑉 𝑃𝐷 = 𝑉𝑃sat −𝑉𝑃air .

(1)

Two challenges impede us from efficiently and effectively extract-

ing meteorological parameters from GRID files. First, the resolution

in the WRF-HRRR Computed Dataset should align with the one in

the Sentinel-2 Imagery, i.e., 9x9 km1. A novel solution is proposed

to address this issue. We first follow the Sentinel-2 Imagery by

1Note that acquiring satellite images at a spatial resolution of 3x3km is infeasible
in practice due to its tremendous space size requirement (i.e., over 20 TB).
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Temperature (K)

(a) Temperature in the summer

Temperature (K)

(b) Temperature in the winter

Figure 4: Examples of the temperature parameters in the WRF-HRRR Computed Dataset.
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USDA Crop Dataset: 2022 Soybeans Yield

Figure 5: Illustration of USDA Crop Dataset for 2022 soybeans yields.

Grid County

(a) Boundaries (b) Satellite images

3km

(Lat, Long)

Sentinel-2 Imagery

9km

WRF-HRRR model

(c) Spatial resolution alignment

Figure 6: Illustration of county partitioning (i.e., 6a and 6b) and spatial resolution alignment (i.e., 6c). (a) Boundaries for one

county (i.e., the red line) and the corresponding high-resolution grids (i.e., the blue line). (b) Satellite images in the Sentinel-2

Imagery for representing the county. (c) One 3x3km and its surrounding eight grids in the WRF-HRRR model are used for

aligning with one 9x9km grid in the Sentinel-2 Imagery.
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Table 3: Details of WRF-HRRR Computed Dataset

Source Parameters Description

WRF-HRRR model

Averaged Temperature 2 metre averaged temperature during a day/month. Unit: K

Precipitation Total precipitation. Unit: kg/m2

Relative Humidity 2 metre relative humidity. Unit: %

Wind Gust Wind gust on the ground. Unit: m/s

Wind Speed Wind speed on the ground. Unit: m/s

Downward Shortwave Radiation Flux
The total amount of shortwave radiation

that reaches the Earth’s surface. Unit: W/m2

Computed by us

Maximal Temperature 2 metre maximal temperature during a day/month. Unit: K

Minimal Temperature 2 metre minimal temperature during a day/month. Unit: K

Vapor Pressure Deficit (VPD) The amount of drying power the air has upon the plant. Unit: kPa

partitioning one county into multiple grids at the spatial resolution

of 9x9 km. Then, we utilize the latitude and longitude of the centric

point in the 9x9km grid to find the nearest 3x3km grid in the WRF-

HRRR model. Next, meteorological parameters in the 3x3 km grid

and its surrounding 8 grids can be used for representing a region

gridded at 9x9 km, as shown in Figure 6c. In this way, our dataset

allows researchers to capture the immediate effects of atmospheric

weather variations occurring directly above the crop-growing area

on crop yields. Second, extracting meteorological parameters from

GRID files is extremely time-consuming as searching the nearest

grids requires to match geo-grids across the continental United

States. To handle this challenge, we develop a global cache solution

by pre-storing the nearest grid information corresponding to a pair

of latitude and longitude for each location, reducing the required

extraction time from 60 days to 42 days (i.e., 1.42x faster than the

one without global caching).

The daily meteorological parameters are computed out of the

hourly data extracted from the GRID file, while themonthlyweather

parameters are derived from our daily data to significantly reduce

the frequency of accessing the GRID file. Finally, daily and monthly

meteorological parameters are stored in the Comma Separated Val-

ues (CSV) file, making them readable by researchers and accessible

for deep learning models. The CSV file also includes additional

valuable information such as the FIPS code of a county and the lati-

tude and longitude of each grid. This provides easy and convenient

access to relevant data for researchers.

USDA Crop Dataset. The data in the USDA Crop Dataset is re-

trieved from the USDA Quick Statistic website [53] via our newly

developed web crawler solution. For each crop type, the USDA web-

site provides its crop information at the county level in a one-year

interval, with a unique key for identifying the data for one crop

type per year, e.g., ł85BEE64A-E605-3509-B60C-5836F6FBB5F6ž for

the corn data in 2022. Our web crawler first retrieves the unique

key by specifying the crop type and the year we need. Then, it

utilizes the unique key to obtain the corresponding crop data in

one year. Finally, the downloaded crop data is stored in the CSV

file. Notably, other useful descriptive information, e.g., FIPS code,

state name, county name, etc., are also contained in the CSV file for

facilitating readability and accessibility.

However, the crop statistic data from the USDA Quick Statis-

tic website is not deep learning-friendly. For example, it uses two

columns, i.e., łData Itemž and łValuež, to keep all valuable crop

information. That is, if the description of the łData Itemž column

refers to the corn yield, then the numerical data in the łValuež col-

umn represents the corn yield. Otherwise, the data in łValuež may

signify other information, e.g., the corn production, the soybeans

yield, etc. New data pre-processing techniques are developed to

unify the data format, making the production and yield information

stored in two independent columns for facilitating Python libraries

(e.g., pandas) to access them.

Our CropNet dataset specifically targets county-level crop yield

predictions across the contiguous U.S. continent. We utilize the

FIPS code to rapidly fetch the data of each county, including a list of

HDF5 files for Sentinel-2 Imagery, two lists of CVS files respectively

for daily and monthly meteorological parameters, and one CVS file

for the USDA Crop Dataset, with configurations stored in the JSON

file for increasing accessibility.

4 EXPERIMENTS AND RESULTS

Three scenarios of climate change-aware crop yield predictions,

i.e., Crop Yield Predictions, One-Year Ahead Predictions, and

Self-Supervised Pre-training, are considered to exhibit the gen-

eral applicability of our CropNet dataset to various types of deep

learning solutions.

4.1 Experimental Settings

Approaches. The LSTM-based, CNN-based, GNN-based, and ViT-

based models are represented respectively by ConvLSTM [49],

CNN-RNN [23], GNN-RNN [12], and MMST-ViT [32] in our

experiments, targeting crop yield predictions. Meanwhile, two self-

supervised learning (SSL) techniques, i.e., MAE [15], and MM-

SSL in the MMST-ViT, serving respectively as unimodal and multi-

modal SSL techniques, are applied under the self-supervised pre-

training scenario. The aforementionedmethods aremodified slightly

to make them fit the CropNet data in our experiments.

Metrics.Three performancemetrics, i.e.,RootMean Square Error

(RMSE), R-squared (R2), and Pearson Correlation Coefficient

(Corr), are adopted to evaluate the efficacy of the CropNet dataset

for crop yield predictions. Note that a lower RMSE value and a

higher R2 (or Corr) value represent better prediction performance.

Details of utilizing our CropNet data for conducting experiments

are deferred to Appendix B for conserving space.
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Table 4: Overall performance for 2022 crop yield predictions, where the yield of cotton is measured in pounds per acre (LB/AC)

and those of the rest are measured in bushels per acre (BU/AC)

Method
Corn Cotton Soybeans Winter Wheat

RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑)

ConvLSTM 19.2 0.795 0.892 56.7 0.834 0.913 5.3 0.801 0.895 6.0 0.798 0.893
CNN-RNN 14.3 0.867 0.923 54.5 0.826 0.899 4.1 0.853 0.915 5.6 0.823 0.906
GNN-RNN 14.1 0.871 0.917 55.1 0.813 0.881 4.1 0.868 0.929 5.3 0.845 0.912
MMST-ViT 13.2 0.890 0.943 50.9 0.848 0.921 3.9 0.879 0.937 4.8 0.864 0.929

4.2 Performance Evaluation for 2022 Crop Yield
Predictions

We conduct experiments on the CropNet dataset for 2022 crop yield

predictions by using satellite images and daily weather conditions

during growing seasons, as well as monthly meteorological condi-

tions from 2017 to 2021, running under the ConvLSTM, CNN-RNN,

GNN-RNN, and MMST-ViT models. Table 4 presents each crop’s

overall performance results (i.e., RMSE, R2, and Corr) in aggregation.

We have two observations. First, all models achieve superb predic-

tion performance with our CropNet data. For example, ConvLSTM,

CNN-RNN, GNN-RNN, and MMST-ViT achieve small RMSE values

of 5.3, 4.1, 4.1, and 3.9, respectively, for soybeans yield predictions

(see the 8th column). These results validate that our CropNet dataset

is well-suited for LSTM-based, CNN-based, and GNN-based, and

ViT-based models, demonstrating its general applicability. Second,

MMST-ViT achieves the best performance results under all scenar-

ios, with lowest RMSE values of 13.2, 50.9, 3.9, and 4.8, as well as

highest R2 (or Corr) values of 0.890 (or 0.943), 0.848 (or 0.921), 0.879

(or 0.937), and 0.864 (or 0.929), respectively for predicting corn, cot-

ton, soybeans, and winter wheat yields. This is due to MMST-ViT’s

novel attention mechanisms [18, 36, 37, 54, 57], which perform the

cross-attention between satellite images and meteorological param-

eters, able to capture the effects of both growing season weather

variations and climate change on crop growth. This experiment

exhibits that our CropNet dataset can provide crop yield predic-

tions timely and precisely, essential for making informed economic

decisions, optimizing agricultural resource allocation, etc.

4.3 Performance of One-Year Ahead Predictions

Crop yield predictions well in advance of the planting season are

also critical for farmers to make early crop planting and manage-

ment plans. Here, we apply the CropNet dataset one year before

the planting season for predicting the next year’s crop yields. Fig-

ure 7 shows our experimental results for 2022 crop yield predictions

by using our CropNet data during the 2021 growing season. We

observe that all models can still maintain decent prediction per-

formance. For instance, ConvLSTM, CNN-RNN, GNN-RNN, and

MMST-ViT achieve the averaged RMSE values of 6.2, of 5.4, of

5.3, and of 4.7, respectively, for soybeans predictions. Meanwhile,

MMST-ViT consistently achieves excellent Corr values, averaging

at 0.922 for corn, 0.890 for cotton, 0.926 for soybeans, and 0.904 for

winter wheat predictions, only slightly inferior to the performance

results for the regular 2022 crop yield predictions (see the last row

in Table 4). This can be attributed to MMST-ViT’s ability to capture

the indirect influence of 2021’s weather conditions on crop growth

in the subsequent year through the utilization of long-term weather

parameters, which further underscores how our CropNet dataset

enhances climate change-aware crop yield predictions.

4.4 Improving the Generalization Capabilities
of DNNs

Self-supervised learning (SSL) techniques [3, 4, 15, 56, 59, 65, 67]

have significantly advanced the generalization capabilities of deep

neural networks (DNNs), especially in vision transformers (ViTs).

Our CropNet dataset with a total size of over 2 TB of data can ben-

efit both deep-learning and agricultural communities by providing

large-scale visual satellite imagery and numerical meteorological

data for pre-training DNNs. To exhibit the applications of our Crop-

Net dataset to self-supervised pre-training, we adopt the MMST-ViT

for crop yield predictions by considering three scenarios, i.e., MMST-

ViT without the SSL technique (denoted as łw/o SSLž), MMST-ViT

with the SSL technique in MAE (denoted as łMAEž), and MMST-ViT

with the multi-modal SSL technique proposed in [32] (denoted as

łMM-SSLž). Figure 8 illustrates the performance results for four crop

types under three performance metrics of interest (i.e., RMSE, R2,

and Corr). We discover that without the SSL technique (i.e., the gray

line), the MMST-ViT model exhibits limitations in generalization

capabilities, resulting in suboptimal crop yield prediction perfor-

mance across all tested scenarios. Besides, pre-training MMST-ViT

with the SSL technique in MAE (i.e., the blue line) improves its

performance results (compared to the łw/o SSLž), with decreased

RMSE values by 3.8, 9.6, 1.3, and 1.7 for corn, cotton, soybeans,

and winter wheat predictions, respectively. This statistical evidence

confirms that our CropNet dataset can improve the generalization

capabilities in vision models. Furthermore, MMST-ViT with the

multi-modal SSL technique (i.e., the green line) achieves the best

performance results under all scenarios. In comparison to the łw/o

SSLž scenario, it decreases RMSE values by 6.4, 18.3, 2.6, and 3.6, re-

spectively, for predicting corn, cotton, soybeans, and winter wheat.

The effectiveness of the multi-modal SSL technique may stem from

its ability to integrate visual satellite imagery with numerical me-

teorological data found in the CropNet dataset. This integration

enhances the generalization capabilities of the MMST-ViT model by

improving its ability to effectively discern the influence of weather

conditions on crop growth patterns during the pre-training phase.

4.5 Significance of Each Modality of Our
CropNet Dataset

To show the necessity and significance of each modality data in

our CropNet dataset, we examine five scenarios. First, we drop the

temporal satellite images (denoted as łw/o temporal imagesž) by

randomly selecting only one day’s imagery data. Second, we discard

the high-resolution satellite image (denoted as łw/o high-resolution
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Figure 7: The performance of one-year ahead crop yield predictions, with the cotton yield measured by LB/AC and other

crop yields measured by BU/AC. In Figure 7a, we present the square root of the RMSE values for the cotton yield to enhance

visualization.
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Figure 8: Illustration of how our CropNet dataset benefits self-supervised learning techniques. Notably, Figure 8a depicts the

square root of RMSE values for the cotton yield to improve visualization.

Table 5: Ablation studies for different modalities of the CropNet dataset, with five scenarios considered and the last row

presenting the results by using all modalities

Modality Scenario
Corn Soybeans

RMSE (↓) R2 (↑) Corr (↑) RMSE (↓) R2 (↑) Corr (↑)

Sentinel-2 Imagery
w/o temporal images 22.1 0.758 0.870 5.72 0.773 0.879

w/o high-resolution images 27.9 0.656 0.810 7.80 0.631 0.794

WRF-HRRR
Computed Dataset

w/o WRF-HRRR data 20.6 0.758 0.871 5.78 0.764 0.874
w/o short-term data 18.6 0.796 0.892 5.04 0.816 0.903
w/o long-term data 15.3 0.854 0.924 4.72 0.825 0.908

All Ð 13.2 0.890 0.943 3.91 0.879 0.937

imagesž) by using only one satellite image to capture the whole

county’s agricultural information. Third, we ignore the effects of

weather variations on crop yields by dropping all meteorological

data, denoted as łw/o WRF-HRRR dataž. Similarly, łw/o short-term

dataž and łw/o long-term dataž represent masking out the daily and

monthly meteorological parameters, respectively. We also include

prediction results by using all modalities of the CropNet (denoted

as łAllž) for performance comparison. Note that the USDA Crop

Dataset provides the label for crop yield predictions; hence, no

ablation study requires.

Table 5 presents the experimental results under the MMST-ViT

model [32]. We have four observations. First, discarding the tem-

poral satellite images (i.e.,łw/o temporal imagesž) degrades perfor-

mance significantly, raising the RMSE value by 8.9 (or 1.81) and

lowering the Corr value by 0.073 (or 0.058) for corn (or soybeans)

yield predictions. This is due to that a sequence of satellite images

spanning the whole growing season are essential for tracking crop

growth. Second, łw/o high-resolution imagesž achieves the worst

prediction performance, with a largest RMSE vaue of 27.9 (or 7.8)

and a lowest Corr value of 0.810 (or 0.794) for corn (or soybeans)

yield predictions. The reason is that high-resolution satellite images
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are critical for precise agricultural tracking. Third, dropping meteo-

rological parameters (i.e., w/o WRF-HRRR data) makes MMST-ViT

fail to capture meteorological effects on crop yields, leading to the

increase of RMSE value by 7.4 (or 1.87) and the decease of Corr value

by 0.072 (or 0.063) for predicting corn (or soybeans) yields. Fourth,

discarding either daily weather parameters (i.e.,łw/o short-term

dataž) or monthly meteorological parameters (i.e.,łw/o long-term

dataž) lowers crop yield prediction performance. The reason is

that the former is necessary for capturing growing season weather

variations, while the latter is essential for monitoring long-term

climate change effects. Hence, we conclude that each modality in

our CropNet dataset is important and necessary for accurate crop

yield predictions, especially for those crops which are sensitive to

growing season weather variations and climate change.

5 THE CROPNET PACKAGE

In addition to our CropNet dataset, we also release the CropNet

package, including three types of APIs, at the Python Package Index

(PyPI), which is designed to facilitate researchers in developing

DNNs for multi-modal climate change-aware crop yield predictions,

with its details presented as follows.

# Download the 2023 Sentinel -2 Imagery

downloader.download_Sentinel2(fips_codes =["01003"], years

=["2023"])

# Download the 2023 WRF -HRRR Computed data

downloader.download_HRRR(fips_codes =["01003"], years =["

2023"])

# Download the 2023 USDA Soybean data

downloader.download_USDA("Soybean", fips_codes =["01003"],

years =["2023"])

Figure 9: Example of our DataDownloader API.

# Retrieve the Sentinel -2 Imagery data for two counties

retriever.retrieve_Sentinel2(fips_codes =["01003","01005"

],years =["2022"])

# Retrieve the WRF -HRRR Computed data for two counties

retriever.retrieve_HRRR(fips_codes =["01003", "01005"],

years =["2022"])

# Retrieve the USDA data for two counties

retriever.retrieve_USDA(fips_codes =["01003", "01005"],

years =["2022"])

Figure 10: Example of our DataRetriever API.

DataDownloader. This API allows researchers to download the

CropNet data over the time/region of interest on the fly. For example,

given the time and region (e.g., the FIPS code for one U.S. county)

of interest, Figure 9 presents how to utilize the DataDownloader

API to download the up-to-date CropNet data.

DataRetriever. This API enables researchers to conveniently ob-

tain the CropNet data stored in the local machine (e.g., after you

have downloaded our curated CropNet dataset) over the time/re-

gion of interest, with the requested data presented in a user-friendly

format. For instance, Figure 10 shows how to employ the DataRe-

triever API to obtain the CropNet data for two U.S. counties.

from torch.utils.data import DataLoader

# The base directory for the CropNet dataset

base_dir = "/mnt/data/CropNet"

# The JSON configuration file

config_file = "data/soybeans_train.json"

# The PyTorch dataloaders for each modality of data

sentinel2_loader = DataLoader(Sentinel2Imagery(base_dir ,

config_file))

hrrr_loader = DataLoader(HRRRComputedDataset(base_dir ,

config_file))

usda_loader = DataLoader(USDACropDataset(base_dir ,

config_file))

Figure 11: The PyTorch example of our DataLoader API.

DataLoader. This API is designed to assist researchers in their de-

velopment of DNNs for crop yield predictions. It allows researchers

to flexibly and seamlessly merge multiple modalities of CropNet

data, and then expose them through a DataLoader object after

performing necessary data preprocessing techniques. A PyTorch

example of using our DataLoader API for training (or testing) DNNs

is shown in Figure 11.

6 CONCLUSION

This work presented our crafted CropNet dataset, an open, large-

scale, and multi-modal dataset targeting specifically at county-level

crop yield predictions across the contiguous United States conti-

nent. Our CropNet dataset is composed of three modalities of data,

i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA

Crop Dataset, containing high-resolution satellite images, daily

and monthly meteorological conditions, and crop yield information,

aligned in both the spatial and the temporal domains. Such a dataset

is ready for wide use in deep learning, agriculture, and meteorol-

ogy areas, for developing new solutions and models for crop yield

predictions, with the consideration of both the effects of growing

season weather variations and climate change on crop growth. Ex-

tensive experimental results validate the general applicability of our

CropNet dataset to various types of deep learning models for both

the timely and one-year ahead crop yield predictions. Besides, the

applications of our CropNet dataset to self-supervised pre-training

scenarios demonstrate the dataset’s versatile utility in improving

the generalization capabilities of deep neural networks (DNNs). In

addition to our crafted dataset, we have also developed the CropNet

package, which allows researchers and practitioners to (1) construct

the CropNet data on the fly over the time/region of interest and (2)

flexibly build their deep learning models for climate change-aware

crop yield predictions. Although our initial goal of crafting the

CropNet dataset and developing the CropNet package is for precise

crop yield prediction, we believe its future applicability is broad

and deserved further exploration. It can benefit the deep learning,

agriculture, and meteorology communities, in the pursuit of more

interesting, critical, and pertinent applications.
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OUTLINE

This document provided supplementary materials to support our

main paper. Section A provides details of data collection. Section B

presents additional experimental settings.

A DETAILS OF DATA COLLECTION

A.1 Significance of Our Cloud Coverage Setting
and Revisit Frequency for Sentinel-2
Imagery

This section supplements the main paper by demonstrating the

necessity and importance of our cloud coverage setting (i.e., ≤

20%) and revisit frequency (i.e., 14 days) for Sentinel-2 Imagery.

Figures 12 and 13 present examples of Sentinel-2 Imagery under

the original revisit frequency of 5 days with and without our cloud

coverage setting, respectively. Figure 14 illustrates satellites images

under our revisit frequency of 14 days and our cloud coverage

setting (i.e., ≤ 20%).
From Figure 12, we observed that the cloud coverage may signif-

icantly impair the quality of Sentinel-2 Imagery (see Figures 12b,

12d, and 12e). Worse still, the extreme cases of cloud coverage (refer

to Figures 12d and 12e) degrade satellite images into noisy represen-

tations. This demonstrates the significance of our cloud coverage

setting for discarding low-quality satellite images. Unfortunately,

under the original sentinel-2 revisit frequency of 5 days, our cloud

coverage setting would result in a large proportion of duplicate

satellite images, e.g., 50% (i.e., 3 out of 6 satellite images) as depicted

in Figure 13. This is because if the cloud coverage in our requested

revisit day exceeds 20%, Processing API [48] will download the

most recent available satellite images, whose cloud coverage sat-

isfies our condition (i.e., ≤ 20%). In sharp contrast, extending the

revisit frequency from 5 days to 14 days markedly decreases the

occurrence of duplicate satellite images. For example, there are no

duplicate satellite images observed in Figure 14. Hence, our revisit

frequency of 14 days for Sentinel-2 Imagery is necessary as it can

significantly improve storage and training efficiency.

A.2 County Partitioning

In our main paper, we have introduced partitioning one county

into multiple high-spatial-resolution grids for precise agricultural

tracking. Here, we provide the details for such a partition. A naive

way to achieve this is to expand a county’s geographic boundary

to a rectangle area by using its maximal and minimal latitude and

longitude, and then evenly divide such a rectangle area into multi-

ple grids. Unfortunately, such a partition solution may result in a

large number of grids outside the county polygon for some large

counties (see Figure 15a). To handle this matter, we develop a novel

solution by dropping the grids outside the county’s boundary (see

Figure 15b). Compared to the naive solution, our solution enjoys

two advantages. First, it can significantly reduce the disk space

storage size. Take Coconino County in Arizona for example, by em-

ploying our solution, its total number of grids degrades from 1023

to 729, which is 0.71x less than that from the naive solution. Sec-

ond, our solution can evade the negative effect incurred by regions

outside the county’s boundary on crop yield predictions.

B SUPPORTING EXPERIMENTAL SETTINGS

CropNet Data. Due to the limited computational resources, we

are unable to conduct experiments across the entire United States.

Consequently, we extract the data with respect to five U.S. states,

i.e., Illinois (IL), Iowa (IA), Louisiana (LA), Mississippi (MS), and

New York (NY), to exhibit the applicability of our crafted CropNet

dataset for county-level crop yield predictions. Specifically, two of

these states (i.e., IA and IL) serve as representatives of the Midwest

region, two others (i.e., LA and MS) represent the Southeastern

region, and the fifth state (i.e., NY) represents the Northeastern

area. Four of the most popular crops are studied in this work, i.e.,

corn, cotton, soybeans, and winter wheat. For each crop, we take

the aligned Sentinel-2 Imagery and the daily data in theWRF-HRRR

Computed Dataset during growing seasons in our CropNet dataset,

respectively for precise agricultural tracking and for capturing the

impact of growing season weather variations on crop growth. Mean-

while, the monthly meteorological parameters from the previous 5

years are utilized for monitoring and quantifying the influence of

climate change on crop yields.
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(a) 2022-12-01

Cloud: 0%

(b) 2022-12-06

Cloud: 35.8%

(c) 2022-12-11

Cloud: 0%

(d) 2022-12-16

Cloud: 97.2%

(e) 2022-12-21

Cloud: 100%

(f) 2022-12-26

Cloud: 2.7%

Figure 12: Examples of Sentinel-2 Imagery under the original revisit frequency of 5 days without our cloud coverage setting,

with the revisit date and the cloud coverage listed below each image.

(a) 2022-12-01

Original

(b) 2022-12-06

Duplicate

(c) 2022-12-11

Original

(d) 2022-12-16

Duplicate

(e) 2022-12-21

Duplicate

(f) 2022-12-26

Original

Figure 13: Examples of Sentinel-2 Imagery under the original revisit frequency of 5 days and our cloud coverage setting. The

revisit date is listed below each image. łDuplicatež (or łOriginalž) indicates whether the satellite image is duplicate (or not)

under our cloud coverage setting.

(a) 2022-12-01

Original

(b) 2022-12-15

Original

(c) 2023-01-01

Original

(d) 2023-01-15

Original

(e) 2023-02-01

Original

(f) 2023-02-15

Original

Figure 14: Examples of Sentinel-2 Imagery under our revisit frequency of 14 days and our cloud coverage setting, with the

revisit date listed below each image. We would like to highlight that there are no duplicate satellite images observed.

Grid County

(a) Naive solution

Grid County

(b) Our solution

Figure 15: Difference between the naive solution and our solution. (a) The naive solution leads to a significant number of grids

falling outside the county’s polygon. (b) By using our solution, the boundaries of grids (i.e., the blue line) align perfectly with

the county’s boundary (i.e., the red line).
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