
CORLD: In-Stream Correlation Manipulation for
Low-Discrepancy Stochastic Computing

Sina Asadi∗, M. Hassan Najafi∗ and Mohsen Imani†

sina.asadi1@louisiana.edu, najafi@louisiana.edu, m.imani@uci.edu
∗School of Computing and Informatics, University of Louisiana at Lafayette, LA, USA

†Department of Computer Science, University of California Irvine, CA, USA

Abstract—Stochastic computing (SC) is a re-emerging com-
puting paradigm providing low-cost and noise-tolerant designs
for a wide range of arithmetic operations. SC circuits operate on
uniform bit-streams with the value determined by the probability
of observing 1’s in the bit-stream. The accuracy of SC operations
highly depends on the correlation between input bit-streams.
While some operations such as minimum and maximum value
functions require highly correlated inputs, some other such as
multiplication operation need uncorrelated or independent inputs
for accurate computation. Developing low-cost and accurate
correlation manipulation circuits is an important research in
SC as these circuits can manage correlation between bit-streams
without expensive bit-stream regeneration. This work proposes a
novel in-stream correlator and decorrelator circuit that manages
1) correlation between stochastic bit-streams, and 2) distribution
of 1’s in the output bit-streams. Compared to state-of-the-
art solutions, our designs achieve lower hardware cost and
higher accuracy. The output bit-streams enjoy a low-discrepancy
distribution of bits which leads to higher quality of results. The
effectiveness of the proposed circuits is shown with two case
studies: SC design of sorting and median filtering.

I. INTRODUCTION

Stochastic computing (SC) [1], [2] is an unconventional
computing paradigm offering low-cost and noise-tolerant so-
lutions for a wide range of arithmetic operations from mul-
tiplication [3], [4] to division [5]–[7], square root [8], scaled
addition and subtraction, minimum and maximum value func-
tions [9], [10], and trigonometric, logarithmic, and exponential
functions [11], [12]. SC treats data as probabilities presented
by streams of random bits. The value of a SC bit-stream is
determined by the ratio of 1’s in the bit-stream, i.e., a bit-
stream with P ones and length L represents P/L value. For
example, 10011000 with P=3 and L=8 represents 3/8 in the
stochastic domain. This unconventional method of represent-
ing data leads to extremely simple computation circuits for
complex arithmetic operations. For example, multiplication
operation can be realized by bit-wise ANDing stochastic bit-
streams [3]. But this simple method of multiplying data is
accurate only if the input bit-streams are statistically inde-
pendent or uncorrelated. Bit-wise ANDing two correlated bit-
streams with high overlap between the position of 1’s in the
bit-streams gives the minimum of the two bit-streams and not
their product. Correlation, hence, plays an important role in
correct functionality of SC circuits [9], [10], [13].

In stochastic systems, both correlated and uncorrelated bit-
streams are needed subject to desired function. Two bit-
streams are positively correlated when all 1’s in the two bit-
streams are completely overlapped, i.e., they are exactly in the

Y = 0.5

RNG 1
CLK

Comp.
… 0 1 0 1 0 1 0 1

X = 0.5

Comp. … 0 1 0 1 0 1 0 1

RNG 2
CLK Comp. … 1 0 1 0 1 0 1 0

Z = 0.5

X bit-stream

Y bit-stream

Z bit-stream

Fig. 1: Example of generating correlated and uncorrelated
bit-streams. X and Y bit-streams are correlated, and both
uncorrelated with bit-stream Z due to using the same and
different RNGs in generating them.

same bit positions. For example, 101100 and 10100 are two
positively correlated bit-streams. Stochastic operations such
as minimum using bit-wise AND, maximum using bit-wise
OR, absolute difference using bit-wise XOR, and division [5]
are examples of operations that need positively correlated
inputs. When there is no or minimum overlap between the
bit positions of 1’s in the bit-streams, the bit-streams are
called negatively correlated. For example, 101100 and 010011
are two negatively correlated bit-streams. Saturating addition
using bit-wise OR is an example of a stochastic operation that
needs negatively correlated inputs [13]. Operations such as
multiplication using bit-wise AND and scaled addition using
multiplexer need uncorrelated inputs. For example, 1010 and
1001 are two uncorrelated bit-streams both representing 0.5
value. Bit-wise ANDing these two bit-streams gives 1000, the
expected value (0.25) from multiplying the two inputs.

An important part of a stochastic system is the data
conversion unit that converts the input data from positional
binary to bit-stream representation. The common approach
for implementing this unit is by using a binary comparator
and a random number generator (RNG). In each clock cycle,
the input data in binary format is compared with a random
number from the RNG. A 1 is produced at the output of the
comparator if the random number is smaller than the input
data. Correlation between input bit-streams can be controlled
at this stage when the bit-streams are generated. Sharing the
same RNG between different data conversion units results in
generating correlated bit-streams. Using different RNGs, on
the other hand, leads to generating uncorrelated bit-streams.
Fig. 1 shows this using an example circuit.

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

45
0

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

𝑺𝟏

X=0, Y=1

Out:

In:

X’=1, Y’=1

X=1, Y=0

Out:

In:

X’=0, Y’=0

X=1, Y=0

Out:

In:

X’=1, Y’=1

X=0, Y=1

Out:

In:

X’=0, Y’=0

𝑺𝟎

X==Y

Out:

In:

X’=X, Y’=Y

X=1, Y=0

Out:

In:

X’=1, Y’=0

𝑺𝟐

X==Y

Out:

In:

X’=X, Y’=Y

X=0, Y=1

Out:

In:

X’=0, Y’=1

Initial State

Pair Saved X Bit Pair Saved Y Bit

Save Unpaired X Bit Save Unpaired Y Bit

Fig. 2: Synchronizer circuit of [13] with depth = 1.

Shuffle
Buffer

Shuffle
Buffer

X RNG0 Y RNG1

X’ Y’

D
FF

D
FF

D
FF

Input Output

= = =
RNG

0 1 2
en en en

M
U

X
0

1

2

3

Fig. 3: Decorrelator circuit of [13] with depth = 4.

While this method is common for controlling correlation
between the inputs of the stochastic system at the first stage
of computations, it cannot be used in the next stages of the
system as the data are already in the bit-stream form. A naive
method for manipulating correlation in the intermediate stages
is to convert the bit-streams back to the positional binary
format and then re-generate them with the desired correlation.
But this approach incurs significant area and power overheads.
Developing low-cost correlation manipulation circuits for in-
stream (i.e., without re-generating bit-streams) managing of
correlation between bit-streams is an ongoing research.

Lee et al. [13] developed a novel synchronizer and desyn-
chronizer circuit for increasing positive and negative correla-
tion respectively between two bit-streams. Fig. 2 depicts the
synchronizer (correlator) circuit of [13] with depth size = 1.
Given two stochastic bit-streams X and Y , the synchronizer
produces two bit-streams which are more positively correlated.
They also developed a novel decorrelator circuit (Fig. 3) to
reduce correlation between two SC bit-streams. At each cycle,
the decorrelator circuit either passes the current input bit or
stores it in a shuffle buffer and emits a previously stored bit
by scrambling the stored bits using an RNG. They use these
circuits to propose improved SC maximum, minimum, and
saturating adder designs. Wu and Miguel [6] also developed
an in-stream correlation-based division and square root circuit
by introducing a skewed synchronizer.

This work proposes an improved correlator that can increase
positive correlation between stochastic bit-streams. We focus
on positive correlation, and leave negative correlation for our
future work, as positive correlation is more common and
needed by more SC operations. We further develop a decor-
relator circuit that can make input bit-streams uncorrelated
with negligible impact on their value. An important advantage

AND

AND

AND

AND

AND

AND

AND

X1
X2

X3
X4

X5
X6

X7
X8

Minimum

Fig. 4: 8-input SC Minimum Circuit

of our proposed circuits is that the output bit-streams have
low-discrepancy (LD) distribution [14]. With LD distribution,
1’s and 0’s are uniformly spaced. Random fluctuations are
removed from bit-streams and the bit-streams converge to
target values significantly faster than the true- or pseudo-
random bit-streams [15], [16]. This significantly improves the
accuracy and reduce the processing time of SC operations. In
summary, the main contributions of this work are as follows:

• A novel correlator and decorrelator circuit for in-stream
correlation manipulation of stochastic bit-streams with no
significant impact on the data values.

• The proposed circuits output high-quality LD bit-streams
irrespective of the distribution of the input bit-streams.

• The proposed circuits can manipulate correlation of any
number of inputs.

• The accuracy, performance, and hardware cost are all
improved compared to those of the state-of-the-art (SoA)
correlation manipulation techniques.

• A finite-state machine (FSM)-based correlator circuit for
SC division.

• Significant improvement in the accuracy and hardware
cost of SC sorting and median filtering circuits.

The rest of the paper is organized as follows: Section II
demonstrates the proposed LD correlator. Section III intro-
duces our LD decorrelator. Section IV discusses our correlator
circuit for SC division. Section V evaluates the accuracy and
the hardware cost of the proposed techniques. Section VI
evaluates the proposed techniques in two application case
studies. Finally, Section VII concludes the paper.

II. PROPOSED LOW-DISCREPANCY CORRELATOR

As we discussed in Section I, the common approach for
generating correlated bit-streams is to use the same RNG in
the data conversion units when generating bit-streams. When
correlated bit-streams with LD distribution are desired the
same Sobol [15] or Halton [16] number generator can be
shared between the data conversion units to generate LD bit-
streams that have maximum overlap between the bit positions
of 1’s, i.e., LD bit-streams with maximum positive correlation.
But this approach is only applicable to the input stage of the
SC system where the input data are converted from binary to
bit-stream representation.

Consider a simple SC circuit, consisted of seven AND gates,
that finds the minimum value between eight input numbers
(Fig. 4). The data are split into four pairs of two numbers,
each pair connected to one AND gate. Each AND gate finds

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

the minimum of its two inputs. An advantage of the common
approach of generating correlated bit-streams is that because
correlated input bit-streams are directly generated, the output
bit-streams from operations such as minimum using AND or
maximum using OR are also correlated and so can directly be
fed to the next stages (if correlated bit-streams are needed)
with no need for any correlation manipulation. So, with this
approach, the minimum of the four produced output bit-
streams are found by connecting them to three AND gates in
two more stages as shown in Fig. 4. But the conventional
approach can be used in this design example when the inputs
are in the binary format and we have control over bit-stream
generation.

The question is what if the inputs to the SC system are
already in the bit-stream form and they are uncorrelated or
the correlation level is unknown? A solution is to convert the
bit-streams back to binary format and then re-generate them by
sharing the same RNG. But this approach costs a significant
latency, area, and power overhead. The in-stream synchronizer
proposed in [13] can be used in such designs to increase the
positive correlation between input bit-streams with no need for
re-generating them. While the synchronizer can manipulate
correlation at a lower cost compared to the bit-stream re-
generation method, it has two weaknesses: 1) it lacks the
advantage of the conventional approach; the output bit-streams
from operations such as minimum and maximum operation
are not necessarily correlated. An additional synchronizer is
needed to make any two output bit-streams correlated. This
will lead to a significant correlation manipulation cost for SC
systems with multiple stages of computation. 2) the bit-streams
produced by the synchronizer are random and so suffer from
random fluctuations [2]. Even in cases that the inputs to the
synthesizer have LD distribution, there is no guarantee that
the synchronizer provides the same uniform distribution in its
output bit-streams.

Here we propose an in-stream correlator called CORLD-
C that addresses the weaknesses of the SoA synchronizer
technique. Fig. 5 shows our proposed correlator with a fixer
size (FS) of 2. The proposed correlator processes the input
bit-stream in segments of 2FS bits and converts the value of
each segment into an LD bit-stream. CORLD-C consists of
two counters (an input-controlled counter and an independent
counter), a register, and a binary comparator. In the correlator
of Fig. 5, FS is 2 indicating that the number of bits that
can be taken in each segment is 4. The circuit counts the
number of 1’s in each 4-bit segment of the bit-stream, stores
the value in a register, and then restarts. While the top
counter processes the next segment, concurrently the bottom
part converts the counted segment to bit-stream using the
bottom counter and comparator. A counter is a Sobol sequence
generator if reversing its output bits [15]. So the output bits of
the bottom counter are connected to the comparator in reverse
order to compare the value stored in the register with a new
Sobol number in each cycle. The comparator produces one bit
of the final bit-stream in each cycle. Since there are at most
4 ones in each 4-bit segment, the proposed circuit should be
able to count from 0 to 4 and then restart. Therefore, when
the bottom counter reaches its first state (CN=0), an Enable

MSB

Enable

0110
0 1 0

(N+1=3-bit)
Counter

1010

0 1 0

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0CN=0

. . .

. . .

. . .

Reset

Fig. 5: Proposed Correlator (CORLD-C) with FS=2

MSB

Enable

0110
0 1 0

(N+1=3-bit) Counter

1010

0 1 0

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0CN=0

. . .

. . .

. . .

Reset

MSB

Enable

1011
0 1 1

(N+1=3-bit) Counter

1110

0 1 1

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0

. . .

. . .

. . .

Reset

Stall

Fig. 6: Proposed Decorrelator (CORLD-D) with FS=2

signal is set to copy the value of the top counter into the
register, and then the top counter restarts. It should be noted
that both Enable and Reset signals are clock edge sensitive;
Enable is sensitive to the positive edge and Reset changes with
the negative edge of the clock signal. The output bit-streams
produced by the proposed correlator are all LD and correlated
as they are all manipulated based on the same Sobol sequence.

III. PROPOSED LOW-DISCREPANCY DECORRELATOR

Conventionally, different RNGs are used in the data con-
version units to generate uncorrelated (independent) stochastic
bit-streams. By comparing the input data with Sobol numbers
from different Sobol sequences, the data can be converted
to independent LD bit-streams [15], [17]. But similar to the
discussion on correlation, this method can only be used and
is efficient if we have control over the data conversion units.
If the input bit-streams are already generated, e.g., they are
the outputs from other stochastic circuits, and our SC system
requires uncorrelated input bit-streams, in-stream decorrelator
circuits are needed to minimize correlation between input bit-
streams and guarantee correct functionality of the system.

Fig. 6 shows our proposed in-stream decorrelator, CORLD-
D, with FS = 2. The proposed circuit consists of binary
counters, registers, and comparators, and is capable of con-
verting two bit-streams, whether they are correlated or not,
into two independent LD bit-streams. The input bit-streams
are segmented into sub-parts of 2FS bits and processed by the
decorrelator circuit to produce independent bit-streams. The

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

MUX

DFF

. . .

. . .

1010

1011

X

Y

Output
Bit-Stream

0

1

Fig. 7: CORDIV SC Division Circuit [5]

first bit-stream is manipulated using the same approach utilized
in CORLD-C. The second bit-stream is manipulated using
a similar approach but with this difference that the bottom
counter, which is connected to the comparator, is halted for
one clock cycle after each round of counting the bits. This is
inspired by the rotation technique of [18].

IV. CORRELATION AND SC DIVISION

Before evaluating the proposed correlator and decorrelator,
we discuss the SoA correlation-based SC division circuits,
CORDIV [5] and ISCBDIV [6], and propose a correlator
circuit to improve the performance of the CORDIV design.

Chen and Hayes developed a novel SC division circuit,
called CORDIV [5], that exploits the correlation between input
bit-streams to realize division operation. The architecture of
CORDIV is shown in Fig. 7. The result of X/Y falls outside
[0,1] – the accepted range of numbers in SC – if X > Y . So
for the SC division circuit, it is assumed that the divisor Y
is greater than the dividend X . CORDIV requires that the X
and Y bit-streams are positively correlated. Our simulations
show that the Mean Absolute Error (MAE) rate of the division
operation when connecting two 28-bit correlated LD bit-
streams (generated by sharing the simplest Sobol sequence
as the source of the random number in the data conversion
unit) to CORDIV is no less than 2.79% (see the last column
of Table I).

A weakness of CORDIV is that it needs an expensive
organization to regenerate bit-streams to guarantee correlation
between them [5]. Inspired by CORDIV, Wu and Miguel
developed an in-stream correlation-based division technique
called ISCBDIV [6]. Fig. 8 shows the architecture of ISCB-
DIV. ISCBDIV uses a skewed synchronizer (SS) to correlate
the input bit-streams for the CORDIV kernel. Two bit-streams
are fed into the SS unit regardless of their correlation. The SS
unit leverages the assumption that the divisor is larger than
the dividend and reorders the dividend bit-stream based on
the divisor. The 1’s in the dividend bit-stream are recorded
when the divisor bit is 0 and then the saved 1’s are paired
with the upcoming 1’s in the divisor bit-stream. The D-Flip
Flop of CORDIV is replaced with a 2-bit shift register (SR).
Some extra logic gates are also used to generate a single bit
random number (RN) which is connected to the select input
of the multiplexer (MUX). The MAE rates of ISCBDIV are
reported in Table I.

In this section, we propose an FSM-based correlator that
improves the accuracy of the SC division when the bit-streams

MUX

SR

Dividend

Divisor

Quotient

0

1

SS

RN

M
U
X

𝑺𝟏𝑺𝟎

X=0, Y=1
Out:

In:
X’=1, Y’=1

X=1, Y=0
Out:

In:
X’=0, Y’=0

X==Y
Out:

In:
X’=X, Y’=Y

X=1, Y=0
Out:

In:
X’=1, Y’=0

Initial State

Pair Saved Bit X

Save Unpaired Bit X

X=0, Y=1
Out:

In:
X’=0, Y’=1

X==Y
Out:

In:
X’=X, Y’=Y

X

Y

X’

Y’

Fig. 8: ISCBDIV SC Division Circuit [6]

Input

X (𝒏-bit) Down
Counter Zero

Bit-stream
#2

AND

Input

Y
MUX

GND

Bit-stream
#1

MSB

LSB𝒙𝟎
… …

CLK

𝒏-state
FSM CLK

LD Bit-stream
Generator

10100000

X=0.25

(3-bit) Down
Counter

Zero

Y=0.5

CLK

8-bit FSM-based
Bit-stream
Generator CLK

10101010

3-bit

3-bit

AND

𝒙𝒏-1

Fig. 9: (left) Proposed FSM-based correlator for SC division
(right) An example for n=3.

are connected to the CORDIV circuit. The proposed correlator
receives data in binary format and generates correlated bit-
streams. At the cost of a down-counter and an AND gate, and
by using the SoA FSM-based LD bit-stream generator [14], an
LD bit-stream (divisor) correlated with another LD bit-stream
(dividend) is generated. The proposed correlator is shown in
Fig. 9. A similar assumption here is that X < Y . The MAE
rates of the proposed FSM-based correlator when connected
to CORDIV are reported in Table I. As it can be seen, the
proposed correlator achieves the minimum MAE rate among
the SoA SC division techniques.

V. EVALUATION

In this section, we evaluate the accuracy and the hardware
cost of the proposed correlator and decorrelator circuit com-
pared to the SoA correlation manipulation techniques.

A. Accuracy Comparison

1) Correlator: The proposed correlator is evaluated and
compared with the SoA synchronizer technique [13] for min-
imum (bit-wise AND), maximum (bit-wise OR), and absolute
difference (bit-wise XOR) function. All these functions require
correlated input bit-streams for correct functionality. As the
input, we first use two uncorrelated LD bit-streams with

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Accuracy Evaluation of the Proposed Correlator with LD Input Bit-streams of 2N bits (N=Input Width).

Input
Width

Input
SCC Method Depth

/FS
Output
SCC

Minimum
Function

MAE (%)

Maximum
Function

MAE (%)

ABS-Diff
Function

MAE (%)

Division
Function

MAE (%)

Division
Method

MAE
(%)

CORDIV MAE (%)
Correlated Sobol 1

Based Inputs

6 1.58

Synchronizer [13]

1 99.48 0.1 1.37 1.47 7.13 Proposed
FSM-based
Correlator

+ CORDIV

0.95

2.82

2 99.97 0 2.83 2.83 9.25
3 99.97 0 4.31 4.31 11.36
4 99.97 0 5.74 5.74 13.43
5 99.97 0 7.11 7.11 15.41

CORLD-C

2 93.59 0.51 0.51 1.03 3.39
ISCBDIV

(SS Depth=FS)

3.15
3 98.29 0.12 0.12 0.24 2.84 3.1
4 99.65 0.02 0.02 0.04 2.82 2.98
5 100 0 0 0 2.82 2.96

7 1.73

Synchronizer [13]

1 99.63 0.08 0.62 0.72 5.93 Proposed
FSM-based
Correlator

+ CORDIV

0.52

2.8

2 99.99 ∼0 1.35 1.35 7.06
3 99.99 0 2.12 2.12 8.18
4 99.99 0 2.87 2.87 9.31
5 99.99 0 3.6 3.6 10.42

CORLD-C

2 93.71 0.52 0.52 1.04 3.47
ISCBDIV

(SS Depth=FS)

2.46
3 98.30 0.13 0.13 0.26 2.84 2.28
4 99.56 0.03 0.03 0.06 2.77 2.23
5 99.90 ∼0 ∼0 0.01 2.77 2.2

8 0.5

Synchronizer [13]

1 99.58 0.08 0.31 0.41 5.68 Proposed
FSM-based
Correlator

+ CORDIV

0.25

2.79

2 99.997 ∼0 0.64 0.64 6.25
3 100 0 1.02 1.02 6.83
4 100 0 1.41 1.41 7.42
5 100 0 1.79 1.79 8.01

CORLD-C

2 93.42 0.51 0.51 1.04 3.56
ISCBDIV

(SS Depth=FS)

1.97
3 98.31 0.12 0.12 0.26 2.87 1.67
4 99.63 0.03 0.03 0.06 2.76 1.64
5 99.92 ∼0 ∼0 0.01 2.76 1.63

different lengths of 2N bits where N is the input bit-width =
6, 7, and 8. MAE rates between the expected and the produced
results are provided in Table I for different FS ranging from 2
to 5 for the proposed correlator, and different depths ranging
from 1 to 5 for the synchronizer technique.

The correlation between two bit-streams X and Y is quan-
tified using the SC Correlation (SCC) as defined in [9]:

SCC(X,Y) =

ad−bc

N×min(a+b,a+c)−(a+b)(a+c)) ad > bc

ad−bc
(a+b)(a+c)−N×max(a−d,0) else

In this formula, a is the number of bit positions where both
bit-streams (X and Y) are 1, b is the number of bit positions
where X is 1 and Y is 0, c is the number of bit positions
where X is 0 and Y is 1, and d is the number of bit positions
where both bit-streams are 0. A SCC equal to 0 means the bit-
streams are completely uncorrelated. SCC values close to +1
or -1 show high positive or negative correlation, respectively.
A positive correlation of +1 means that there is maximal
correlation between the two bit-streams. Notice that because
the SCC values are small numbers, the numbers we report in
the tables are SCCs multiplied by 100.

The MAE of the minimum, maximum, and absolute dif-
ference functions is zero when their input bit-streams are
positively correlated, i.e. SCC = 1.0 (100.0 when multiplying
SCC by 100). As the results presented in Table I suggest, the
SCC value could be deceptive where some number of 1’s are
removed from the input bit-stream by the correlation manipu-
lation technique. This is especially the case with the maximum
value function. When depth increases in the synchronizer
technique, the MAE of the maximum function increases due to
the number of 1’s stuck in the FSM states in the final cycles.

This similarly affects the absolute difference function since
the bias (defined as the deviation from the original value [13])
of the larger bit-stream increases as depth increases. With our
proposed correlator, although in some cases the output SCC
is less than that of the synchronizer, the bias of both input
bit-streams is zero, resulting in accurate minimum, maximum,
and absolute difference function.

We further evaluate the performance of the proposed cor-
relator when inputs are pseudo-random bit-streams. Maximal
period linear-feedback shift registers (LFSRs) are used to
generate pseudo-random bit-streams corresponding to each
input bit-width. The SCC values and the MAE rates for the
minimum and maximum functions are reported in Table III.
As it can be seen, similar to the case with LD bit-streams,
the synchronizer faces an increase in the MAE rates when the
maximum function is applied on pseudo-random bit-streams
and depth increases. The performance of CORLD-C, on the
other hand, improves (MAE decreases) as FS increases.

Multiplication (using AND) is another common SC opera-
tion. As a different type of input, we evaluate the performance
of CORLD-C in a common case that the inputs to the corre-
lator are the outputs from some SC multiplication operations.
The SoA work uses LD Sobol-based input bit-streams for ac-
curate multiplication [2], [18]. The output bit-streams however
are random and do not follow LD distribution. Table II reports
the input and output SCC, and the MAE rates of the minimum
and maximum functions for the case that the inputs to the
correlator are the outputs of bit-wise ANDing two pairs of 256-
bit LD bit-streams generated by using MATLAB built-in Sobol
1 and Sobol 2 sequences. We also evaluate a case that one pair
of the inputs is generated using Sobol 3 and Sobol 4 sequences.
As reported in Table II, CORLD-C provides accurate outputs

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Accuracy Evaluation of the Proposed Correlator and Decorrelator when Inputs are 28-bit Outputs from SC
Multiplication

Synchronizer [13] CORLD-C Decorrelator [13] CORLD-D

Input Type Input
SCC

Multiplication.
Function

MAE (%)

Depth/
FS

Output
SCC

Min.
Func.

MAE (%)

Max.
Func.

MAE (%)

Output
SCC

Min. or Max.
Func.s

MAE (%)

Output
SCC

Multiplication.
Function

MAE (%)

Output
SCC

Multiplication.
Function

MAE (%)

Sobol based
1&2 and 1&2 80.29 18.96

1 99.82 0.04 0.38 N/A N/A N/A N/A N/A N/A
2 100 0.003 0.74 96 0.63 24.17 2.63 4.87 1.48
3 100 ∼0 1.11 98.74 0.23 14.28 1.7 2.3 0.84
4 100 0 1.51 99.58 0.07 9.29 2.15 1.23 0.61
5 100 0 1.88 99.86 0.02 10.55 1.47 0.78 0.35

Sobol based
1&2 and 3&4 1.27 20.08

1 98.2 0.37 0.54 N/A N/A N/A N/A N/A N/A
2 99.92 0.025 0.64 90.7 1.4 0.51 0.87 1.46 1.05
3 99.99 0.005 1.03 97.48 0.44 3.95 1 0.78 0.69
4 100 ∼0 1.4 99.27 0.13 2.72 0.87 0.51 0.53
5 100 0 1.78 99.67 0.05 5.21 1.02 0.38 0.43

TABLE III: Accuracy Evaluation of the Proposed Correlator
(CORLD-C) with Pseudo-random Input Bit-streams.

Input
Width

Input
SCC Method Depth

/FS
Output
SCC

Minimum
Function

MAE (%)

Maximum
Function

MAE (%)

6 2.35

Synchronizer [13]

1 88.35 1.73 1.77
2 98.74 0.28 2.54
3 99.65 0.07 3.91
4 99.92 0.02 5.34
5 99.97 0.005 6.77

CORLD-C

2 43.81 4.67 4.67
3 79.37 2.39 2.39
4 96.68 0.55 0.55
5 99.68 0.05 0.05

7 1.81

Synchronizer [13]

1 77.04 2.70 2.47
2 92.27 1.10 1.53
3 97.26 0.48 2.03
4 98.88 0.25 2.72
5 99.56 0.14 3.48

CORLD-C

2 46.65 4.90 4.90
3 58.41 3.97 3.97
4 81.02 2.05 2.05
5 91.35 1.09 1.09

8 1.63

Synchronizer [13]

1 79.18 2.52 2.32
2 94.27 0.95 1.08
3 98.11 0.4 1.02
4 99.33 0.2 1.28
5 99.73 0.11 1.63

CORLD-C

2 46.39 4.74 4.74
3 69.77 3.14 3.14
4 85.20 1.64 1.64
5 95.57 0.5 0.5

for both minimum and maximum functions and its MAE rates
decrease by increasing FS.

2) Decorrelator: We evaluate the accuracy of the proposed
decorrelator (CORLD-D) compared to the decorrelator design
of [13] when connecting correlated pseudo-random and LD
bit-streams of 2N -bit length (N=6, 7, 8) to the inputs of the
decorrelator circuit. The accuracy evaluation results are shown
in Table IV. An Input SCC of 100 means that the input bit-
streams are completely correlated. A lower Output SCC (closer
to 0) means a better independence between output bit-streams.
We evaluate the quality of the output bit-streams by measuring
the MAE rate of performing SC multiplication (bit-wise AND)
on the produced bit-streams. The reported MAE is the mean
of the measured error rates when multiplying all possible pairs
of input values (e.g., 256 × 256 combinations for 8-bit input
width). Note that using different random number sequences
(e.g., different Sobol sequences) in generating the input bit-

streams can result in different MAEs. Hence, in our evaluation,
we selected different pairs of Sobol sequences from a large
set of more than 1,100 Sobol sequences to generate LD bit-
streams. The reported MAEs in Table IV are the averages of
the measured values.

The last column of Table IV reports the MAE rate of mul-
tiplying two numbers represented by two independent Sobol-
based bit-streams as a standard for our comparison. Notice
that for 0 percent error, bit-streams of 22N -bit length must be
processed [18] [19] but here we process 2N -bit bit-streams to
have the same precision for both input and output. As can be
seen in Table IV, CORLD-D achieves comparable accuracy
compared to the independent LD Sobol-based bit-streams for
different input widths. In most cases, our decorrelator performs
better than the decorrelator design of [13] for both LD and
pseudo-random bit-streams. We further evaluated CORLD-
D for the case that the inputs are outputs bit-streams from
multiplication operation. The output SCC and the MAE rates
of the multiplication function are reported in Table II. We can
see that in most cases CORLD-D provides a lower output SCC
and MAE compared to the SoA decorrelator [13].

B. Cost Comparison

The hardware cost of the proposed correlator and decor-
relator is compared with the SoA designs in Table V and
Table VI. We synthesized the designs using the Synopsys
Design Compiler v2018.06 with the 45nm FreePDK gate
library [20]. The proposed designs consist of two parts: a static
part which is independent of the number of input bit-streams
and so its area is fixed, and a part that its area depends on
and increases with the number of inputs. The synchronizer
and decorrelator design of [13] have different structures. The
minimum depth for the decorrelator is 2 while it is 1 for the
synchronizer. The hardware area of the decorrelator varies by
the input width as the size of the RNGs depends on the number
of bits in the input bit-streams. Although the hardware cost of
the synchronizer is less than that of CORLD-C, the total cost
of using the synchronizer technique depends on the number
of input bit-streams. At each stage, new synchronizers are
needed as the synchronizer circuit only makes two bit-streams
correlated with respect to each other. Therefore, correlating
a large number of bit-streams in a SC system with multiple
stages of computations needs many synchronizers. We will
show this in Section VI with two applications of correlated

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Accuracy Evaluation of the Proposed Decorrelator (CORLD-D) for Pseudo-random and LD Bit-streams of 2Nbit.

Pseudo-random Bit-streams LD Bit-streams

Input
Width

Input
SCC Method

Depth/
Fixer
Size

Output
SCC MAE (%) Output

SCC MAE (%)

MAE (%)
Independent
Sobol-based
Bit-streams

6 100

Decorrelator [13]

2 64.54 3.83 42.43 2.59

0.65

3 59.46 4.19 30.75 2.31
4 63.98 4.30 25.08 2.68
5 57.19 4.86 33.04 2.67

CORLD-D

2 52.28 3.90 9.92 1.24
3 22.39 2.77 1.79 0.90
4 8.84 2.33 -2.19 0.79
5 25.96 3.09 -11.94 1.84

7 100

Decorrelator [13]

2 67.13 4.35 39.25 2.36

0.36

3 56.12 3.48 29.33 1.85
4 56.81 3.32 24.87 2.64
5 46.23 2.52 23.39 1.66

CORLD-D

2 59.55 4.07 12.66 0.87
3 49.85 3.12 2.89 0.64
4 29.8 2 -0.25 0.47
5 32.63 1.7 -2.21 0.57

8 100

Decorrelator [13]

2 67.67 4.54 39.32 2.49

0.19

3 54.70 3.46 22.76 1.48
4 52.18 3.17 24.36 2.52
5 42.49 2.51 21.21 1.25

CORLD-D

2 49.14 3.53 13.98 0.69
3 35.1 2.25 3.86 0.4
4 32.62 1.81 0.45 0.3
5 5.44 0.98 -0.49 0.25

TABLE V: Hardware area (µm2) of the proposed CORLD-C
and CORLD-D for different FSs

Static
Area

of Input
Dependent Area

Total Area
For 1 Input

Total Area
For 2 Inputs

FS -C -D -C -D -C -D -C -D
2 45 83 170 215 253 386 424
3 67 129 238 306 367 544 605
4 90 175 298 389 474 687 772
5 112 220 354 467 574 822 929

TABLE VI: Hardware area (µm2) of the synchronizer and
decorrelator circuit of [13] for different depths

Depth Decorrelator [13] Synchronizer [13]
1 N/A N/A N/A 107
2 1225 1589 1969 166
3 1288 1652 2033 168
4 1357 1721 2101 237
5 1393 1757 2137 241

SSG Area 569 751 941
Input Width 6-bit 7-bit 8-bit

bit-streams, SC design of sorting and median filtering. Our
correlator, on the other hand, is able to correlate all bit-
streams by manipulating each one only once. This leads to a
significant hardware cost saving compared to the synchronizer
technique. The proposed decorrelator is also advantageous
from the hardware cost point of view. The hardware cost of
the decorrelator design of [13] depends on the area of the
Sobol sequence generator (SSG) which is more than that of
other types of RNGs. However, selecting SSG as the RNG
significantly improves the accuracy.

VI. CASE STUDIES

In this section, we evaluate the performance and the hard-
ware cost of the proposed correlator in the SC design of

X

Y

Max(X,Y)

Min(X,Y)

X

Y

Min(X,Y)

Max(X,Y)

(a) (b)

Fig. 10: Schematic representation of a CAS block (a) Ascend-
ing order, (b) Descending order

3

3

5

3

8

1
X1

X2

X3

X4

S1

S2
S3

S4

5 1

8

1

8

5

1

3

5

8

Fig. 11: 4-input Sorting Network

the sorting and median filtering circuits which include both
minimum and maximum operations. These circuits consist
of multiple stages of computations requiring correlated bit-
streams for correct functionality.

A. Sorting

A sorting network is a combination of some compare-and-
swap (CAS) blocks that sorts a set of input data [10]. A CAS
block comprises a minimum and a maximum operation in
ascending or descending order as shown in Fig. 10. A 4-input
sorting network made of 6 CAS blocks is shown in Fig. 11.
A low-cost SC design for hardware implementation of sorting
networks is proposed in [10]. In this design, each CAS block is
implemented using one AND (for minimum operation) and one
OR (for maximum operation) gate. For correct and accurate
functionality, the input bit-streams to the CAS blocks must
be correlated. Connecting uncorrelated bit-streams to the SC
sorting circuit and so CAS blocks results in inaccurate and

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Accuracy Evaluation of the Stochastic Sorting
System with the Proposed and SoA Correlator Technique when
Sorting 256-bit independent LD input bit-streams

Synchronizer [13] CORLD-C
Depth/

FS
8 inputs

MAE (%)
16 Inputs
MAE (%)

8 Inputs
MAE (%)

16 Inputs
MAE (%)

1 1.05 2.19 N/A N/A
2 2.06 3.74 2.25 3.11
3 3.18 5.41 0.69 1.10
4 4.29 7.09 0.16 0.32
5 5.38 8.75 0.03 0.07

TABLE VIII: Hardware Cost (µm2) Comparison of the SC
Sorting and Median Filtering System with different number
of inputs utilizing proposed CORLD-C and SoA synchronizer
(# of Cor.: # of correlator needed for the design.)

Synchronizer [13] CORLD-C
of

Inputs
of
CAS

of
Cor.

Area
Depth=1

Area
Depth=2

of
Cor.

Area
FS=2

Area
FS=3

8 24 24 2,580 3,998 8 1,408 1,974

Sorting

16 80 80 8,600 13,328 16 2,771 4,850
32 240 240 25,800 39,984 32 5,498 7,696
64 672 672 72,240 111,955 64 10,951 15,325

128 1,792 1,792 192,640 298,547 128 21,856 30,582
256 4,608 4,608 495,360 767,693 256 43,667 61,098

9 (3× 3) 19 19 2,043 3,165 9 1,579 2,213 Median
Filter25 (5× 5) 246 246 26,445 40,984 25 4,305 6,027

wrong output data. Correlator circuits are therefore needed to
manipulate and guarantee correlation between bit-streams.

The overhead cost of using the synchronizer technique [13]
depends on, and significantly increases with, the number of
CAS blocks. This is because the output bit-streams from
different CAS blocks are not necessarily correlated when using
this technique. Therefore, each pair of inputs to a CAS block in
each stage of computations needs a separate synchronizer. On
the other hand, our proposed CORLD-C needs to correlate the
input bit-streams only once, in the first stage of computations,
where the input bit-streams arrive.

Table VII shows the MAE rates of an 8-input and a 16-input
SC sorting system [10] processing data received in the form of
independent LD bit-streams. The MAEs are reported for two
different approaches for manipulating correlation: 1) using the
SoA synchronizer with different depths 2) using the proposed
CORLD-C with different FS. As can be seen in the reported
numbers, the proposed technique outperforms the SoA tech-
nique particularly when FS increases. Increasing depth in the
synchronizer technique increases the MAE rates mainly due
to the weak performance of the synchronizer technique in
performing the maximum operation. Table VIII compares the
number of needed correlator units and the hardware cost of
the implemented designs. As it can be seen, the hardware area
saving provided by CORLD-C increases significantly when the
number of inputs increases. For example, for the 256-input SC
sorting system, CORLD-C with FS=2 reduces the hardware
area cost by more than 17× compared to the synchronizer
technique with Depth=2.

B. Median Filtering

A median filter is a nonlinear filter which removes impulse
noises from images and videos by replacing each pixel value

X1

X2

X3

X4

X5

X6

X7

X8

X9

Median

Fig. 12: 3× 3 median filter using 19 CAS blocks [10]

TABLE IX: Accuracy Evaluation of SC Median Filtering
System with 256-bit indepdendent LD input bit-streams

Synchronizer [13] CORLD-C
Depth/

FS
9 (3× 3) inputs

MAE (%)
25 (5× 5) Inputs

MAE (%)
9 inputs

MAE (%)
25 Inputs
MAE (%)

1 1.09 4.07 N/A N/A
2 2.05 8.92 2.52 3.61
3 3.25 13.68 0.8 1.36
4 4.43 18.38 0.2 0.44
5 5.59 22.9 0.04 0.11

by the median of all pixel values in the local neighborhood.
Fig. 12 shows the structure of a 3×3 median filter circuit
made of 19 CAS blocks. The design of a 5×5 median filtering
circuit can be found in [10]. For correct functionality, similar
to the SC sorting system, the CAS blocks need correlated
inputs. Correlation manipulation units are therefore needed to
guarantee correlation between the inputs of the CAS blocks.
The hardware cost and the accuracy of the SC median filtering
circuit implemented with different correlation manipulation
approaches are reported in Table VIII and Table IX. As
shown, CORLD-C achieves significantly lower MAE rates
with considerable saving in the hardware area cost.

VII. CONCLUSION

In this work, we proposed two in-stream correlator
(CORLD-C) and decorrelator (CORLD-D) techniques to in-
crease and decrease correlation between SC bit-streams. The
proposed techniques produce high-quality LD bit-streams with
no impact on the data values. The accuracy, performance,
and hardware cost are all improved compared to the SoA
correlation manipulation techniques. We further proposed an
FSM-based correlator that improves the accuracy of the SoA
SC division circuit. Evaluating the proposed techniques in the
SC design of the sorting and median filtering circuits showed a
significant reduction in the MAE rates and hardware area cost.
The synthesizable Verilog HDL codes of this work including
the proposed correlator and decorrelator circuits are made
publicly available at https://github.com/asadisina/CORLD.

ACKNOWLEDGMENT

This work was supported in part by the Louisiana
Board of Regents Support Fund no. LEQSF(2020-23)-RD-
A-26, National Science Foundation grants #2019511 and
#2127780, Semiconductor Research Corporation (SRC) Task
No. 2988.001, and Department of the Navy, Office of Naval
Research, grant #N00014-21-1-2225.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 149–156.

[2] A. Alaghi, W. Qian, and J. P. Hayes, “The Promise and Challenge
of Stochastic Computing,” IEEE Trans. on Computer-Aided Design of
Integ. Circ. and Sys., vol. 37, no. 8, pp. 1515–1531, Aug 2018.

[3] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
Architecture for Fault-Tolerant Computation with Stochastic Logic,”
IEEE Trans. on Comp., vol. 60, no. 1, pp. 93–105, Jan 2011.

[4] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in the 54th DAC,
2017, 2017, pp. 1–6.

[5] T. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 116–121.

[6] D. Wu and J. San Miguel, “In-stream stochastic division and square root
via correlation,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[7] S.-I. Chu, “New divider design for stochastic computing,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp.
147–151, 2020.

[8] S. Mitra, D. Banerjee, and M. K. Naskar, “A low latency stochastic
square root circuit,” in 2021 34th International Conference on VLSI
Design and 2021 20th International Conference on Embedded Systems
(VLSID), 2021, pp. 7–12.

[9] A. Alaghi and J. Hayes, “Exploiting correlation in stochastic circuit
design,” in Computer Design (ICCD), 2013 IEEE 31st International
Conference on, Oct 2013, pp. 39–46.

[10] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-Cost
Sorting Network Circuits Using Unary Processing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 8, pp.
1471–1480, Aug 2018.

[11] M. H. Najafi, P. Li, D. J. Lilja, W. Qian, K. Bazargan, and
M. Riedel, “A Reconfigurable Architecture with Sequential Logic-
Based Stochastic Computing,” J. Emerg. Technol. Comput. Syst.,
vol. 13, no. 4, pp. 57:1–57:28, Jun. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3060537

[12] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, M. H. Najafi, and
T. Rosing, “SCRIMP: A General Stochastic Computing Architecture
using ReRAM in-Memory Processing,” in 2020 Design, Automation Test
in Europe Conference Exhibition (DATE), 2020, pp. 1598–1601.

[13] V. T. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits
for stochastic computing,” in DATE’18, 2018, pp. 1417–1422.

[14] S. Asadi, M. H. Najafi, and M. Imani, “A Low-Cost FSM-based Bit-
Stream Generator for Low-Discrepancy Stochastic Computing,” in 2021
Design, Automation Test in Europe Conference Exhibition (DATE), 2021,
pp. 908–913.

[15] S. Liu and J. Han, “Energy Efficient Stochastic Computing with Sobol
Sequences,” in DATE’17, March 2017, pp. 650–653.

[16] A. Alaghi and J. Hayes, “Fast and accurate computation using stochastic
circuits,” in DATE’14, March 2014, pp. 1–4.

[17] S. Asadi and M. H. Najafi, “LDFSM: A Low-Cost Bit-Stream Generator
for Low-Discrepancy Stochastic Computing: Late Breaking Results,” in
Proceedings of the 57th ACM/EDAC/IEEE Design Automation Confer-
ence, ser. DAC ’20. IEEE Press, 2020.

[18] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
Stochastic Computation Deterministically,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2925–2938,
Dec 2019.

[19] S. Asadi and M. H. Najafi, “Accelerating deterministic stochastic com-
puting with context-aware bit-stream generator,” in Proceedings of the
2020 on Great Lakes Symposium on VLSI, New York, NY, USA, 2020,
p. 157–162.

[20] “NCSU FreePDK 45nm Library,” https://research.ece.ncsu.edu/eda/
freepdk/freepdk45/.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:27:30 UTC from IEEE Xplore. Restrictions apply.

		2021-12-18T20:40:32-0500
	Certified PDF 2 Signature

