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ABSTRACT

Adversarial training (AT) can help improve the robustness of Vision

Transformers (ViT) against adversarial attacks by intentionally

injecting adversarial examples into the training data. However,

this way of adversarial injection inevitably incurs standard accu-

racy degradation to some extent, thereby calling for a trade-o�

between standard accuracy and adversarial robustness. Besides, the

prominent AT solutions are still vulnerable to adaptive attacks. To

tackle such shortcomings, this paper proposes a novel ViT archi-

tecture, including a detector and a classi�er bridged by our newly

developed adaptive ensemble. Speci�cally, we empirically discover

that detecting adversarial examples can bene�t from the Guided

Backpropagation technique. Driven by this discovery, a novel Multi-

head Self-Attention (MSA) mechanism is introduced for enhancing

our detector to sni� adversarial examples. Then, a classi�er with

two encoders is employed for extracting visual representations re-

spectively from clean images and adversarial examples, with our

adaptive ensemble to adaptively adjust the proportion of visual rep-

resentations from the two encoders for accurate classi�cation. This

design enables our ViT architecture to achieve a better trade-o�

between standard accuracy and adversarial robustness. Besides, the

adaptive ensemble technique allows us to mask o� a random subset

of image patches within input data, boosting our ViT’s robustness

against adaptive attacks, while maintaining high standard accuracy.

Experimental results exhibit that our ViT architecture, on CIFAR-10,

achieves the best standard accuracy and adversarial robustness of

90.3% and 49.8%, respectively.
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1 INTRODUCTION

The Vision Transformers (ViT) architecture has demonstrated im-

pressive capabilities in a wide range of vision tasks, including image

and video classi�cation [2, 12, 73], dense prediction tasks [46, 80, 81],

self-supervised learning [3, 20, 72], among others [6, 13, 24, 27, 36,

38, 39, 41, 49, 50, 62, 62, 89]. However, similar to Convolutional

Neural Networks (CNNs) [21, 25, 28, 32, 40, 61, 63, 68–70, 92], the

ViT architecture is vulnerable to adversarial attacks [5, 11, 18, 54–

56, 91] achieved by maliciously altering clean images within a small

distance, leading to incorrect predictions with high con�dence. This

vulnerability hinders the adoption of ViT in critical domains such

as healthcare, �nances, etc.

So far, adversarial training (AT) methods [1, 29, 30, 35, 52, 63, 79,

82, 90] are widely accepted as the most e�ective mechanisms for

improving ViT’s robustness against adversarial attacks, by inten-

tionally injecting adversarial examples into the training data. Unfor-

tunately, existing AT solutions struggle with two limitations. First,

they su�er from a trade-o� between standard accuracy (i.e., the accu-

racy on clean images) and adversarial robustness (i.e., the accuracy

on adversarial examples), with improved robustness while yield-

ing non-negligible standard accuracy degradation. Second, these

solutions are not e�ective against adaptive attacks [9, 45, 75, 86],

i.e., a category of adversarial attacks capable of exploiting the weak

points of defense methods to adaptively adjust their attack strate-

gies. Hence, it calls for the exploration of enhancing ViT’s robust-

ness against adaptive attacks.

One potential direction to tackle the trade-o� between standard

accuracy and adversarial robustness is the detection/rejection mech-

anism. This involves training an additional detector to identify and

reject malicious input data, with several solutions proposed in the

literature [51, 58, 60, 74, 88]. However, these detection techniques

have limited e�ectiveness against adaptive attacks and cannot be

applied to scenarios involving natural adversarial examples, as re-

ported in a prior study [26]. Hence, it is crucial to develop novel

solutions that can address limitations associated with the aforemen-

tioned direction and are suitable for a wide range of scenarios.

In this work, we aim to boost the robustness of ViT against

adaptive attacks in a more general and challenging scenario where
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malicious inputs cannot be rejected. Such a scenario is common to

several critical application domains, such as autonomous driving,

where the system must correctly recognize a road sign even if it

has been maliciously crafted. To this end, we propose a novel ViT

architecture consisting of a detector and a classi�er, connected by

a newly developed adaptive ensemble. After adversarially trained

by One-step Least-Likely Adversarial Training, our proposed ViT

architecture can withstand adaptive attacks while incurring only a

negligible standard accuracy degradation.

In essence, our detector incorporates two innovative designs

to make adversarial examples more noticeable. First, based on

our empirical observations, we introduce a novel Multi-head Self-

Attention (MSA) mechanism [78] to expose adversarial perturba-

tion by Guided Backpropagation [71]. Second, the Soft-Nearest

Neighbors Loss (SNN Loss) [14, 64] is tailored to push adversar-

ial examples away from their corresponding clean images. Our

detector thus can e�ectively sni� adaptive attack-generated ad-

versarial examples. On the other hand, our classi�er’s adversarial

training involves two stages: pre-training and �ne-tuning. During

the pre-training stage, our classi�er utilizes one clean encoder, one

adversarial encoder, and one decoder to jointly learn high-quality

visual representations and encourage pairwise similarity between

a clean image and its adversarial example. Here, we extend Masked

Autoencoders (MAE) [20] to facilitate adversarial training through

a new design. Speci�cally, we reconstruct images from one pair

of a masked clean image and its masked adversarial example, for

representation learning, with a contrastive loss on a pair of visual

representations to encourage similarity. In the �ne-tuning stage, we

discard the decoder and freeze the weights in the well-trained de-

tector and two encoders, with a newly developed adaptive ensemble

to bridge the detector and the two encoders, for �ne-tuning an MLP

(Multi-layer Perceptron) for accurate classi�cation. Our adaptive en-

semble also masks o� a random subset of image patches within the

input, enabling our approach to mitigate adversarial e�ects when

encountering malicious inputs. Extensive experimental results on

three popular benchmarks demonstrate that our approach outper-

forms state-of-the-art adversarial training techniques in terms of

both standard accuracy and adversarial robustness.

2 RELATEDWORK

Detection Mechanisms. Detecting adversarial examples (AEs)

and then rejecting them (i.e., detection/rejection mechanism) can

improve the model’s robustness against adversarial attacks. That

is, the input will be rejected if the detector classi�es it as an adver-

sarial example. Popular detection techniques include Odds [60],

which considers the di�erence between clean images and AEs

in terms of log-odds; NIC [51], which checks channel invariants

within deep neural networks (DNNs); GAT [88], which resorts to

multiple binary classi�ers; JTLA [58], which proposes a detection

framework by employing internal layer representations, among

others [15, 17, 34, 67, 85]. Unfortunately, existing detection methods

are typically ine�ective in defending against adaptive attacks. Be-

sides, the detection/rejection mechanism cannot be generalized to

domains where natural adversarial examples exist. Our work di�ers

from previous solutions in two aspects. First, we introduce a novel

Multi-head Self-Attention (MSA) mechanism by using the Guided

Backpropagation technique, which can largely expose adversarial

perturbations. Second, we incorporate the Soft-Nearest Neighbors

(SNN) loss to maximize the di�erences between clean images and

adversarial examples. These innovative designs enable our detector

to e�ectively defend against adaptive attacks. Moreover, our newly

developed adaptive ensemble further enhances our detector, em-

powering it to be applied to scenarios where rejecting input images

is not allowed.

Adversarial Training Approaches. Adversarial training (AT)

aims to improve the model’s robustness against adversarial attacks

by intentionally injecting adversarial examples into the training

data. For example, PGD-AT [52] proposes a multi-step attack to

�nd the worst case of training data, TRADES [90] addresses the

limitation of PGD-AT by utilizing theoretically sound classi�cation-

calibrated loss, EAT [76] uses an ensemble of di�erent DNNs to

produce the threat model, FAT [82] reduces the computational

overhead of AT by utilizing FGSM attack with the random initial-

ization, LAS-AWP [29] boosts AT with a learnable attack strategy,

Sub-AT [35] constrains AT in a well-designed subspace, and many

others [1, 7, 16, 22, 23, 30, 42–44, 53, 66, 79, 83, 84, 93, 94]. However,

prior ATs su�er from the dilemma of balancing the trade-o� be-

tween standard accuracy and adversarial robustness. Besides, their

improved robustness is vulnerable to adaptive attacks. In contrast,

our work introduces a ViT architecture consisting of a detector and

a classi�er, connected by a newly developed adaptive ensemble,

able to boost AT to defend against adaptive attacks. Meanwhile, it

lowers the standard accuracy degradation by employing two en-

coders for extracting visual representations respectively from clean

images and adversarial examples, empowering our ViT architecture

to enjoy a better trade-o� between accuracy and robustness.

3 PRELIMINARY: ONE-STEP LEAST-LIKELY
ADVERSARIAL TRAINING

Adversarial training (AT) improves the model’s robustness against

adversarial attacks by feeding adversarial examples into the training

set. Given a model 5 with parameters ) , a dataset with # samples,

i.e.,X = {(x8 , ~8 ) | 8 ∈ {1, 2, . . . , # }}, the cross-entropy loss function
L, and a threat model Ā, AT aims to solve the following inner-

maximization problem and outer-minimization problem, i.e.,

min
)

#
∑

8

max
%∈Ā

L(5) (x8 + %), ~8 ), (1)

where the inner problem aims to �nd the worst-case training data

for the given model, and the outer problem aims to improve the

model’s performance on such data. Recently, one-step Fast Ad-

versarial Training (FAT) [82] is popular due to its computational

e�ciency. FAT sets the threat model under a small and ;∞ con-

straint n , i.e., Ā = {% : ∥% ∥∞ f n}, by performing Fast Gradient

Sign Method (FGSM) [18] with the random initialization, i.e.,

% = Uniform(−n, n) + n · sign(∇x L(5) (x8 ), ~8 )),
% = max(min(%, n),−n), (2)

where Uniform denotes the uniform distribution and sign is the sign

function. Notably, the second row in Eq. (2) serves to project the

perturbation % back into the ;∞ ball around the data x8 .
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To �nd the worst-case adversarial examples, we extend FAT

by performing the least-likely targeted attacks, inspired by prior

studies [33, 76]. That is, given an input x8 , we perform targeted

FGSM by setting the targeted label as its least-likely class, i.e., ~;;8 =

argmin 5) (x8 ), arriving at,

% = Uniform(−n, n) + n · sign(∇x L(5) (x8 ), ~;;8 )),
% = max(min(%, n),−n),

(3)

Our one-step least-likely adversarial training is to utilize Eq.(3) to

produce the threat model.

4 OUR APPROACHES

4.1 Problem Statement

We consider a set of# samples, i.e.,X = {(x8 , ~8 ) | 8 ∈ {1, 2, . . . , # }},
where x ∈ R

�×, ×�Ą is an input image with the resolution of

(�,, ) and the channel count of �� , and ~ ∈ [�] denotes its label.
For notational convenience, we let 3 = � ×, ×�� . A classi�er is

a function 5) : R
3 → [�], parameterized by a neural network. We

consider two types of inputs, i.e., a clean image xcln sampled from

the standard distribution Dstd and an adversarial example xadv

sampled from the adversarial distribution Dadv. We assume Dstd

and Dadv follow di�erent distributions. The clean image xcln itself

or its augmented variant can be the input, while the adversarial ex-

ample xadv is a malicious version of x within a small distance. That

is, for some metric 3 , we have 3 (x, xadv) f n , but xadv can mislead

conventional classi�ers. Parameterized by another neural network,

a detector 65 is to tell whether an input image is a clean image

or not, i.e., 65 : R3 → {±1}, where +1 and −1 indicate a clean im-

age and an adversarial example, respectively. The binary indicator

function 1{ ·} is 1 if both the detector 65 and the classi�er 5) make

correct predictions. We follow previous studies [52, 90] by refer-

ring standard accuracy, and adversarial robustness, as classi�cation

accuracy on clean images and adversarial examples, respectively.

4.2 Detector

Parameterized by a neural network with parameters 5, the detector

65 : R3 → {±1} is to determine whether the input is a clean image

or not, where +1 and −1 respectively represent a clean image and

an adversarial example, i.e.,

65 (x) =
{

+1, if x is a clean image

−1, otherwise.
(4)

Aiming to generalize the robust model to critical domains (e.g.,

autonomous driving), the input will not be rejected in this work.

Instead, we have modi�ed it to output an estimated probability of

? ∈ [0, 1] for clean images and 1 − ? for adversarial examples.

The design of our detector architecture is motivated by our empir-

ical observation in that the adversarial perturbation is detectable after

Guided Backpropagation visualization. Due to the small distance

between a clean image and its corresponding adversarial example,

their di�erence is notoriously imperceptible (see Figures 1a and 1d),

making it theoretically hard to detect adversarial examples [74]. In

our empirical study, we resort to Guided Backpropagation [71] to

visualize the di�erence between a clean image and an adversarial

(a) Clean image (b) Guided

Grad-CAM

(c) Guided Backprop

(d) Adversarial

example

(e) Guided

Grad-CAM

(f) Guided Backprop

Figure 1: Visualizations on the clean image (Top) and the

adversarial example (Bottom). Left: Original clean image and

adversarial example. Middle: Guided Grad-CAM visualiza-

tion. Right: Guided Backpropagation visualization.

example. Interestingly, we have discovered that after Guided Back-

propagation visualization on the adversarial example, its adversarial

perturbation is quite noticeable; see Figure 1c versus Figure 1f, i.e.,

visualization on a clean image versus on its adversarial example.

Notably, our experiments also include the visualization compari-

son of Guided Grad-CAM [65], developed recently; see Figure 1b

versus Figure 1e. However, Guided Grad-CAM exhibits inferior

performance (compared to Guided Backpropagation) in terms of

exposing adversarial perturbation. This empirical study motivates

us to maximize the di�erence between clean images and adversarial

examples by using Guided Backpropagation visualization.

Figure 2a illustrates our detector architecture. Given an input

image x ∈ R
3 , we perform Guided Backpropagation on the original

image, arriving at an input variant x′ ∈ R
3 . Following the standard

Vision Transformers (ViT) [12], we patchify the two inputs into

two sets of image patches and embed them via linear projection,

arriving at two sets of patch embeddings, i.e., E? ∈ R
"×� and

E
′
? ∈ R

"×� , respectively for the original input and its input variant.
Here, " represents the number of patches and � indicates the

hidden dimension. Driven by the above empirical observation, a

naive idea to expose adversarial perturbation is to add two sets of

patch embeddings. However, our empirical results show that this

simple solution cannot achieve satisfactory performance. To address

this issue, we propose a novel Multi-head Self-Attention (MSA) [78]

to consider two sets of patch embeddings simultaneously, inspired

by recent studies [4, 46, 57]. Let E = E? + Epos and E
′
= E

′
? + Epos

respectively represent two sets of patch embeddings after adding

positional embeddings Epos ∈ R
"×� , our proposed MSA can be

expressed as follows:

MSA (W,Q , \ ) = Softmax(WQ) + H
√
3

)\ ,

W =]& · K , Q =] · K , \ =]+ · K .
(5)
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(a) Detector (b) Classifer

Figure 2: Our model architecture: (a) detector and (b) classi�er during the pre-training stage.

Here, H = ]� · K ′ is the relative detection bias obtained from

the Guided Backpropagation-based input variant. ]& , ] , ]+ ,

and]� are learnable projection matrices, similar to those in prior

studies [59, 78]. The intuition underlying Eq. (5) is that we aim to

expose adversarial perturbation by adding the relative bias obtained

from Guided Backpropagation visualization. After encoding, we

follow Masked Autoencoders (MAE) [20] by performing global

average pooling on the full set of encoded patch embeddings, with

the resulting token fed into an MLP (i.e., multiple-layer perceptron)

for telling whether the input is a clean image or not.

Aiming to further di�erentiate adversarial examples from clean

images, we propose a novel loss function to train our detector,

including a Cross-Entropy (CE) Loss Lce and a Soft-Nearest Neigh-

bors (SNN) loss Lsnn [14, 64], for jointly penalizing the detection

error and the similarity level between the clean image and the

adversarial example, i.e.,

Ldet = (1 − _) · Lce (65 (x), ~det) + _ · Lsnn (zcln, zadv), (6)

where _ ∈ (0, 1) is a hyperparameter to control the penalty degree

of the two terms, and zcln and zadv denote the global representa-

tions, i.e., the global average pooling of encoded representations,

for clean images and adversarial examples, respectively.

The SNN loss is a variant of contrastive loss, allowing for the

inclusion of multiple positive pairs. We regard members belonging

to the same determined class (e.g., two clean images) as positive

pairs, while members belonging to di�erent determined classes (e.g.,

a clean image and an adversarial example) as negative pairs. Given

a mini-batch of 2� samples, with one half being clean images, i.e.,

{(x8 , ~det8 =1)}�8=1, and the other half of adversarial examples, i.e.,

{(xadv8 , ~det8 =−1)}2�
8=�+1, the SNN loss at temperature g is de�ned

below:

Lsnn = − 1

2�

2�
∑

8=1

log

∑2�

9=1,8≠9,~det
ğ

=~det
Ġ

exp(−sim(z8 , z 9 )/g)
∑2�
9=1,8≠:

exp(−sim(z8 , z: )/g)
, (7)

where z8 is the visual representations for the input x8 and the

similarity metric sim(·, ·) is measured by the cosine distance. The

SNN loss enforces each point to be closer to its positive pairs than

to its negative pairs. In other words, the SNN loss penalizes the

similarity level between clean images and adversarial examples,

making adversarial examples more discernible by our detector.

4.3 Classifer

Inspired by self-supervised learning for vision tasks [3, 8, 20], we

separate our adversarial training into two stages, i.e., pre-training

and �ne-tuning, for learning high-quality visual representations

and �ne-tuning a robust classi�er, respectively.

Pre-training. Our classi�er architecture for the pre-training is

inspired by MAE [20]. Di�erent from MAE, we utilize two en-

coders, denoted as the clean encoder and the adversarial encoder,

for learning visual representations from clean images and adver-

sarial examples, respectively. The decoder aims to reconstruct the

original inputs from the visual representations encoded by the two

encoders. Figure 2b shows the classi�er architecture during the pre-

training. Given an input image x ∈ R
3 , let xcln and xadv denote its

clean and adversarial variants, respectively, with the clean variant

obtained by augmenting the original input. Regarding the clean

variant xcln, we randomly mask out a large proportion of image

patches (e.g., 75%) and then feed the subset of visible patches into

the clean encoder. The masked tokens are inserted into correspond-

ing positions after the encoder. Finally, the decoder reconstructs

the clean variant x̄cln from the full set of image patches, including

encoded visible patches and masked tokens. The reconstruction of

the adversarial variant xadv follows a similar procedure, except that

its visible patches are encoded by the adversarial encoder. Notably,

the position of masked image patches in the adversarial variant xadv

is the same as that in the clean variant xcln in order to minimize

their visual representation di�erence during the pre-training.

Let z̄cln and z̄adv respectively denote the global representations

of clean and adversarial variants, obtained by performing global av-

erage pooling on the decoder’s input sequence. Our design utilizes a

new loss function to learn visual representations by simultaneously

minimizing the reconstruction error and the visual representation

di�erence, i.e.,

Lenc = (1 − ¬) · Lrec (x, x̄) + ¬ · Lcl (z̄cln, z̄adv), (8)

where ¬ ∈ (0, 1) is a hyperparameter and x̄ is the reconstructed

image. Lrec and Lcl denote the reconstruction loss and the con-

trastive loss, respectively. Given a set of � input images, we �rst

generate their adversarial variants, arriving at a mini-batch of 2�

samples, consisting of � clean variants {xcln8 }�8=1 and � adversarial

variants {xadv8 }2�
8=�+1. We consider the form of contrastive loss in
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Figure 3: Illustration of our model architecture during the �ne-tuning stage.

SimCLR [8], and de�ne our contrastive loss at temperature g as

follows:

ℓ (8, 9) = − log
exp(sim(z̄8 , z̄9 )/g)

∑

8≠:,:=1,...,2� exp(sim(z̄8 , z̄: )/g)
,

Lcl =
1

2�

�
∑

:=1

[ℓ (:, : + �) + ℓ (: + �, :)] ,
(9)

where z̄8 denotes visual representations for x
cln
8 (or xadv8 ) and the

similarity level sim(·, ·) is measured by the cosine distance. In par-

ticular, we regard clean and adversarial variants from the same

input as positive pairs, while the rest in the same batch are negative

pairs. Hence, the loss value decreases when visual representations

for the clean and the adversarial variants of the same input become

more similar.

Fine-tuning. The detector and the classi�er (including two en-

coders and one decoder) are trained jointly in the pre-training

stage. After that, we drop the decoder and freeze the weights in

the well-trained detector and two encoders, with Figure 3 depict-

ing our model architecture during the �ne-tuning stage. Di�erent

from MAE, which encodes the full set of image patches during the

�ne-tuning, our approach randomly masks out a relatively small

proportion of image patches (e.g., 45%), aiming to eliminate the

potential adversarial e�ect if the input is an adversarial example.

Given an input image (x, ~cls), where x ∈ R
3 is either a clean

image or an adversarial example with the label ~cls ∈ [�], we ran-
domly mask the input image twice, arriving at two di�erent masked

inputs. Two subsets of visible patches from the two masked inputs

are fed into the clean and the adversarial encoders, respectively. The

masked tokens are introduced onto their corresponding positions

after the encoder, obtaining two full sets of visual representations,

i.e., ẑcln and ẑadv which are partially encoded by the clean and

the adversarial encoders, respectively. We then perform the global

average pooling on the adaptive ensemble of ẑcln and ẑadv, with the

result fed into an MLP for classi�cation.

Adaptive Ensemble. Although randomly masking an input image

can eliminate the potential adversarial e�ect, this way inevitably

hurts standard accuracy during the �ne-tuning. In this paper, we

propose adaptive ensemble [37] to tackle this issue. That is, the

global representation for an input image is derived from the sum of

ẑcln and ẑadv with an adaptive factor ? ∈ [0, 1], where ẑcln and ẑadv
are visual representations encoded by the clean and the adversarial

encoders, respectively, and ? is the probability of the input image

being a clean image estimated by our detector.

Let � be a full set of image patches and + be a subset of �,

including visible patches only. 1+ (·) is the indicator function for

evaluating whether an image patch is visible. Hence, for each image

patch of �, we have,

1Ē (8 ) =
{

1, if the patch is visible

0, otherwise
, 8 = 1, 2, . . ., ", (10)

where " is the number of image patches, i.e., |�|. For notational
convenience, we let 1cln

+
indicate visible patches fed into the clean

encoder. Likewise, 1adv
+

indicates visible patches fed into the adver-

sarial encoder. Let ẑ8 be the visual representation of the 8-th image

patch, with 8 ∈ {1, 2, . . . , "}. Our adaptive ensemble is de�ned by:

ẑ8 =
? · 1cln

+
(8) · ẑcln8 + (1 − ?) · 1adv

+
(8) · ẑadv8

max
(

? · 1cln
+

(8) + (1 − ?) · 1adv
+

(8), n
) , (11)

where the denominator serves to normalize the adaptive ensemble

of ẑcln8 and ẑadv8 , and n is a small value to avoid divison by zero (i.e.,

n = 14 − 12 in this paper). The intuition underlying Eq. (11) is that

if our detector has a high con�dence that the input is a clean image

(i.e., ? is large), the global representation ẑ8 will be mostly encoded

by the clean encoder. Otherwise, ẑ8 will be mainly encoded by the

adversarial encoder. In addition, as our pre-training encourages

the similarity level of the clean and the adversarial variants from

a given input (see Eq. (8) and Eq. (9)), and two di�erent masked

inputs exist upon the �ne-tuning, the invisible image patches in

one masked input can be glimpsed from the other masked input.
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5 EXPERIMENTS AND RESULTS

5.1 Experimental Setup

Datasets. We conduct experiments on three widely-used bench-

marks. (i) CIFAR-10 [31]: 60, 000 32x32 RGB images of 10 classes.

(ii) CIFAR-100 [31]: 60, 000 32x32 RGB examples in 100 categories.

(iii) Tiny-ImageNet [10]: 120, 000 64x64 RGB images of 200 classes.

Compared Methods. We compare our approach with four detec-

tion methods, i.e., Odds [60], NIC [51], GAT [88], and JTLA [58].

We compare our approach with �ve adversarial training (AT) coun-

terparts: PGD-AT [52], TRADES [90], FAT [82], Sub-AT [35], and

LAS-AWP [29], to exhibit how it boosts the ViT’s robustness.

Evaluation.We consider three state-of-the-art adaptive attacks, i.e.,

AutoAttack [9],AdaptiveAutoAttack (A3) [87], andParameter-

Free Adaptive Auto Attack (PF-A3) [45], for evaluating detection

accuracy and adversarial robustness. The attack constraint, if not

speci�ed, is set to n = 8/255.
Model Size.We build our detector and classi�er on top of Vision

Transformers (ViT), with their architectures following ViT [12] and

MAE [20], respectively. Ourmodel size is pruned down to as small as

possible in order to conduct a fair comparisonwith baselines. Table 1

lists the model size details. Our architecture consists of a detector

and a classi�er (including two encoders and one decoder), with

54.0" parameters in total. To conduct a fair comparison, existing

adversarial training baselines use the ViT-Base model [12] with

total parameters of 85.6" as the backbone network.

Hyperparameters. For all our models, if not speci�ed, we use

AdamW [48] with V1=0.9, V2=0.999, the weight decay of 0.05, and

a batch size of 512. During the pre-training, the detector and the

classi�er (i.e., two encoders and one decoder) are trained jointly.

For the detector, we follow the setting in [19] by setting the epochs

of 100, the base learning rate of 14 − 3, the linear warmup epochs of

5, and the cosine decay schedule [47]. For the classi�er, by contrast,

we pre-train it for 200 epochs, with the base learning rate of 14 − 4,

the linear warmup of 20 epochs, and a masking ratio of 75%. After

pre-training, we drop the decoder and freeze the weights on the

detector and the two encoders. Then, we �netune the classi�er

for 100 epochs, with the base learning rate of 14 − 3, the linear

warmup of 5, and the cosine decay schedule, and a masking ratio

of 45%. The patch size is set to 4 (or 8) for CIFAR-10/CIFAR-100 (or

Tiny-ImageNet). We grid-search hyperparamters _ in Eq. (6) and

¬ in Eq. (8) of Section 4 and empirically set _ to 0.15 and ¬ to 0.35

for all datasets.

5.2 Overall Performance on Our Classi�er

Overall Comparisons on CIFAR-10. We �rst conduct extensive

experiments on CIFAR-10 and compare our approach to its state-of-

the-art adversarial training (AT) counterparts listed in Section 5.1

in terms of standard accuracy and adversarial robustness under

attack constraints of n = 4/255 and of n = 8/255. Table 2 lists

comparative results. It is observed that our approach achieves the

best performance under all three scenarios. In particular, our ap-

proach achieves the standard accuracy of 90.3%, outperforming the

best competitor (i.e., LAS-AWP) by 3.5%. This is contributed by em-

ploying two encoders to extract visual representations respectively

from clean images and adversarial examples, able to signi�cantly

mitigate the adverse e�ect of adversarial training on standard accu-

racy. Besides, when the attack constraint is set to n = 4/255, our
approach achieves the best robustness of 49.8%, 49.5%, and 48.1%

against AutoAttack, Adaptive Auto Attack (A3), and Parameter-Free

Adaptive Auto Attack (PF-A3), respectively. Our method signi�-

cantly surpasses all its counterparts. For example, it outperforms

two recent state-of-the-arts, i.e., Sub-AT and LAS-AWP, respectively

by 2.6% and 4.5% under the attack of A3. Thirdly, increasing the

attack constraint to n = 8/255 results in the decrease of adversarial

robustness. But our approach still maintains the best robustness of

45.3%, 44.5%, and 44.7% under the attack of AutoAttack, A3, and

PF-A3, respectively. The comparative results demonstrate that our

masked adaptive ensemble is robust enough to withstand strong

white-box attacks. This is because masking a small proportion of

image patches can signi�cantly mitigate the adversarial e�ect of

malicious inputs.

Overall Comparisons onCIFAR-100 andTiny-ImageNet.Here,

we conduct a comprehensive comparison between our approach

and adversarial training (AT) counterparts on CIFAR-100 and Tiny-

ImageNet datasets. Table 3 lists the comparative results. On CIFAR-

100, we observed that our approach achieves the best standard

accuracy of 67.5%, outperforming the best competitor (i.e., LAS-

AWP) by 3.4%. Meanwhile, our method achieves the best robustness

of 36.9%, 35.1%, and 35.4% under the attack of AutoAttack, A3, and

PF-A3, respectively. This con�rms that our approach can achieve a

decent standard accuracy and robustness when being generalized

to the dataset with large classes. On the Tiny-ImageNet dataset,

both our approach and the baseline methods experience a decrease

in performance. However, our proposed method still achieves the

highest standard accuracy of 49.7%, which outperforms the best

baseline (i.e., FAT), by 2.6%. Moreover, all baselines su�er from a

poor robustness on the Tiny-ImageNet dataset (i.e., f 20.0%), while

our approach maintains a decent robustness of 22.6%, 21.4%, and

20.9% under the attack of AutoAttack, A3, and PF-A3, respectively.

Performance Stability. We next conduct experiments on CIFAR-

10, CIFAR-100, and Tiny-ImageNet to evaluate the performance

stability under di�erent scales of datasets and di�erent types of

adaptive attacks. We compare our approach with three baselines,

i.e., FAT, Sub-AT, and LAS-AWP. Figures 4a, 4b, 4c and 4d illustrate

the comparative results of standard accuracy, as well as robustness

against AutoAttack, A3, and PF-A3, respectively. We have three

discoveries. First, as depicted in Figure 4a, our approach (i.e., the

pink line) achieves the best standard accuracies of 90.3%, 67.5%,

and 49.7% under CIFAR-10, CIFAR-100, and Tiny-ImageNet, re-

spectively. The empirical evidence veri�es that our approach can

maintain superior standard accuracy when generalized to large

datasets. Second, on all three datasets, our approach achieves the

best robustness under all adaptive attacks, as shown in Figures 4b,

4c and 4d. Take the robustness results under PF-A3 (i.e., Figure 4d)

for example, our proposed masked adaptive ensemble achieves the

robustness of 44.7%, 35.4%, and 20.9% on CIFAR-10, CIFAR-100,

and Tiny-ImageNet, respectively. These results outperform those

of LAS-AWP (i.e., the blue line), which is the best baseline, by 3.1%,

4.1%, and 3.5%, respectively. Third, when scaling up the dataset

from CIFAR-10 to Tiny-ImageNet, our approach su�ers from the

least robustness degradation of 22.7%, 23.1%, and 23.8% under the
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Table 1: Model Details used in our design

Model Layer Hidden Size Head MLP Size Parameters

Detector ViT-Tiny 12 192 3 768 7.8M

Classi�er

Clean Encoder 12 384 3 1536 21.3M

Adv Encoder 12 384 3 1536 21.3M

Decoder 8 192 4 768 3.6M
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Figure 4: Performance stability under di�erent datasets and di�erent adaptive attacks.

Table 2: Overall comparative results of standard accuracy and

adversarial robustness on CIFAR-10 under attack constraints

of n = 4/255 and of n = 8/255, with best results shown in bold

Method
Standard

Accuracy

Robustness ( n = 4/255) Robustness ( n = 8/255)

AutoAttack A3 PF-A3 AutoAttack A3 PF-A3

PGD-AT 83.7 45.1 43.4 43.5 41.5 40.3 40.9

TRADES 84.9 46.6 43.5 43.6 41.5 40.7 40.3

FAT 85.2 43.8 42.1 43.4 40.7 39.8 38.9

Sub-AT 84.5 47.4 46.9 45.1 43.3 43.6 42.2

LAS-AWP 86.8 46.9 45.0 47.7 44.0 43.4 43.6

Ours 90.3 49.8 49.5 48.1 45.3 44.5 44.7

Table 3: Overall comparisons on CIFAR-100 and Tiny-

ImageNet, with best results shown in bold

Method
CIFAR-100 Tiny-ImageNet

Standard
Accuracy

AutoAttack A3 PF-A3
Standard
Accuracy

AutoAttack A3 PF-A3

PGD-AT 62.5 31.9 31.5 31.1 42.9 17.2 16.4 16.8
TRADES 61.8 32.5 31.3 31.6 44.1 15.2 14.7 14.1
FAT 63.2 30.2 29.2 28.6 47.1 14.1 13.3 12.9

Sub-AT 63.8 34.5 32.8 32.2 45.6 17.6 16.2 16.8
LAS-AWP 64.1 33.4 33.1 33.9 45.2 19.4 17.3 17.4

Ours 67.5 36.9 35.1 35.4 49.7 22.6 21.4 20.9

attack of AutoAttack, A3, and PF-A3, respectively. These results

con�rm that in terms of robustness, our approach enjoys the best

performance stability upon scaling up to large datasets.

5.3 Ablation Studies on Our Classi�er

Pre-training: Contrastive Loss.We qualitatively and quantita-

tively exhibit the impact of our proposed loss, i.e., Eq. (9), on learning

visual representations. We �rst present the qualitative evaluations.

Speci�cally, we reconstruct masked adversarial examples and com-

pare reconstruction quality by utilizing our approach with/without

the contrastive loss (CL) in SimCLR [8]. Figure 5 illustrates the quali-

tative results. For images on each row, from left to right, are original

adversarial example, the masked input, the image generated by our

Table 4: Ablation studies on the classi�er, including (a) the

contrastive loss (CL) in pre-training stage and (b) the adaptive

ensemble (AE) in �ne-tuning stage

Method
Standard

Accuracy

Robustness

A3 PF-A3

w/o CL 74.6 35.7 34.2

w/ CL 79.5 41.8 42.6

(a) Pre-training

Method
Standard

Accuracy

Robustness

A3 PF-A3

w/o AE 81.9 38.9 39.4

w/ AE 90.3 44.5 44.7

(b) Fine-tuning

approach without the CL (i.e., w/o CL), and the image reconstructed

by our approach with the CL (i.e., w/ CL). We observed that when

using the CL, our approach always achieves a better reconstruction

quality; See the 3rd (and 7th) column versus the 4th (and 8th) col-

umn. Besides, we discovered that our approach (w/o CL), in some

cases, reconstructs adversarial examples with poor quality; See the

3rd and 7th columns in the last row. By contrast, our method (w/ CL)

still achieves a high reconstruction quality on these examples; See

the 4th and 8th columns in the last row. These results demonstrate

that our proposed loss can boost the performance when learning

visual representations from adversarial examples.

Next, we conduct experiments on CIFAR-10 for quantitatively

evaluating visual representations by using the linear probing ac-

curacy. Speci�cally, we consider the standard accuracy as well as

the robustness under the attack of A3 and PF-A3. Table 4a presents

the experimental results. We observed that by utilizing the con-

trastive loss, our approach achieves performance improvement of

4.9%, 6.1%, and 8.4% on standard accuracy, robustness against A3,

and robustness against PF-A3, respectively. These empirical results

demonstrate the necessity and importance of our proposed loss for

learning high-quality visual representations.

Fine-tuning: Adaptive Ensemble. Here, we conduct experiments

to show the impact of our adaptive ensemble on the standard ac-

curacy and the robustness. Table 4b lists the experimental results

with/without our adaptive ensemble. Note that we employ the

naive average ensemble when conducting experiments without
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Figure 5: Comparison of the reconstruction quality frommasked adversarial examples by employing our approach with/without

the contrastive loss, denoted as our approach (w/ CL) and our approach (w/o CL), respectively. From left to right are the original

adversarial example, the masked input, reconstruction by our approach (w/o CL), and reconstruction by our approach (w/ CL),

respectively.

our adaptive ensemble. From Table 4b, we observed that our adap-

tive ensemble signi�cantly bene�ts the standard accuracy, with

8.4% performance improvement. Meanwhile, it boosts adversarial

robustness against A3 by 5.6% and against PF-A3 by 5.3%. This is be-

cause the adaptive factor Ħ estimated by our detector can adaptively

adjust the proportion of visual representations from clean and ad-

versarial encoders, thereby signi�cantly boosting the classi�cation

performance.

Fine-tuning: Masking Ratio.We conduct experiments on CIFAR-

10 to explore how di�erent masking ratios a�ect the performance

of our approach during the �netuning. 12 groups of masking ratios

are taken into account, ranging from 25% to 80%. Note that in the

pre-training, we directly set the masking ratio to 75% by following

MAE [20]; hence, no similar ablation study is required. Here, we

consider the trade-o� between standard accuracy and robustness

(under A3 and PF-A3 attacks).

Figures 6a and 6b illustrate experimental results. In Figure 6a,

we observed that increasing the masking ratio negatively a�ects

standard accuracy (i.e., the grey line) in all scenarios. In contrast,

when the masking ratio is small (i.e., f 50%), a larger masking ratio

bene�ts robustness against A3 (i.e., the blue line). But when the

masking ratio is greater than 50%, increasing the masking ratio

hurts this robustness. This is because a small subset of masked

patches can eliminate the adversarial e�ect of adversarial attacks,

while a large subset of masked patches would prevent our classi�er

from accurate classi�cation. Clearly, our approach achieves the best

trade-o� on the masking ratio of 45%, with standard accuracy of

90.3% and robustness against A3 of 44.5%.

Similarly, Figure 6b depicts robustness against PF-A3 (i.e., the

pink line) under di�erent masking ratios. We also include standard

accuracy (similar to Figure 6a) for a better illustration of the trade-

o�. Obviously, when the masking ratio equals 45%, our approach
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Figure 6: Illustration of how di�erent masking ratios in the

�netuning a�ect the performance.

achieves the best trade-o�, with standard accuracy of 90.3% and

robustness of 44.7%. Based on the above discussion, we set our

masking ratio to 45% to ensure the best trade-o� between standard

accuracy and robustness (under adaptive attacks).

5.4 Evaluating Our Detector

In this section, we conduct experiments on CIFAR-10 for comparing

our detector with four detection baselines, i.e., Odds [60],NIC [51],

GAT [88], and JTLA [58]. Three aforementioned adaptive attacks

under two small attack constraints, i.e., Ċ = 2/255 and Ċ = 4/255,
are used for evaluating detection accuracy. Table 5 lists the detec-

tion accuracy values under di�erent attack methods. We observed

that our detector achieves the best detection accuracy under all

scenarios. Speci�cally, our approach achieves the best detection

accuracy of 99.4% under the attack constraint of Ċ = 4/255 (see the
5th column). Decreasing the attack constraint to 2/255 increases
the detection di�culty, with our approach still maintaining the

superior detection accuracy of 95.8% (see the 4th column) in the

worst case. Besides, our detector outperforms all baselines, with

the detection accuracy improvements ranging from 1.8% (i.e., 95.9%

vs. 94.1%, see the 3rd column) to 6.3% (i.e., 96.4% vs. 90.1%, see the
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Table 5: Comparisons of detection accuracy on CIFAR-10

under di�erent adaptive attacks with best results shown in

bold

Method
Attack Constraint ( Ċ = 2/255 ) Attack Constraint ( Ċ = 4/255)

AutoAttack A3 PF-A3 AutoAttack A3 PF-A3

Odds 90.1 90.6 91.2 94.8 94.3 94.9

NIC 93.1 92.5 94.4 95.8 95.6 96.4

GAT 92.6 93.8 93.0 96.0 95.8 95.6

JTLA 94.3 94.1 93.9 95.6 96.4 96.2

Ours 96.4 95.9 95.8 99.4 98.7 98.9

Table 6: Ablation studies on our detector

Method A3 PF-A3

w/o GB 92.3 91.9

w/o MSA 92.9 92.8

Ours 98.7 98.9

2nd column). The statistical evidence exhibits that our two new

designs for the detector, i.e., the new Multi-head Self-Attention

(MSA) mechanism and the proposed loss function, are e�ective for

exposing adversarial perturbation, rendering our detector to better

defend against adaptive attacks.

5.5 Ablation Studies on Our Detector

MSA on the Detection Accuracy. Here, we empirically show

how our developed MSA mechanism a�ects the detection accuracy

under the attack of A3 and PF-A3. We consider two scenarios. First,

we remove the Guided Backpropagation (GB) variant to validate

whether it bene�ts the detection of adversarial examples, denoted

as “w/o GB”. Second, we discard our proposed MSA and instead

naively add two sets of patch embeddings respectively from the

clean image and the GB variant, denoted as “w/o MSA”. Table 6 lists

the experimental results. We discovered that simply adding two

sets of patch embeddings only marginally improves the detection

accuracy of 0.6% (or 0.9%) under the A3 (or PF-A3) attack (see “w/o

GB” vs. “w/o MSA”). Equipped with our MSA mechanism, in sharp

contrast, the Guided Backpropagation technique can signi�cantly

bene�t the detection task, with the detection accuracy improvement

of 6.4% (or 7.0%) under the A3 (or PF-A3) attack (see “w/o GB” vs.

“Ours”). These results con�rm that (i) the Guided Backpropagation

technique can help expose adversarial perturbation and (ii) our

proposed MSA can signi�cantly boost the detector’s robustness

against adaptive attacks.

SNN Loss on Visual Representations. Here, we reveal the e�ect

of our proposed loss, i.e., Eq. (6), on detecting adversarial examples.

We consider how our detector with or without the Soft-Nearest

Neighbors (SNN) loss a�ects the resulting representation space. In

particular, we employ t-SNE visualization [77] on 200 clean images

randomly sampled from CIFAR-10 and 200 adversarial examples

generated either by the A3 attack or by the PF-A3 attack. Figures 7a

and 7b depict the results by using the A3 attack, while Figures 7c

and 7d present the results by employing the PF-A3 attack. We ob-

served that without the SNN loss, the representations for clean

Clean
Adv

(a) w/o SNN loss

(under A3 attack)

Clean
Adv

(b) w/ SNN loss

(under A3 attack)

Clean
Adv

(c) w/o SNN loss

(under PF-A3 attack)

Clean
Adv

(d) w/ SNN loss

(under PF-A3 attack)

Figure 7: t-SNE visualization on CIFAR-10 by using our detec-

tor with/without SNN loss. For each experiment, we perform

t-SNE visualization on 200 clean images and 200 adversarial

examples generated either by the A3 attack, i.e., (a) and (b),

or by the PF-A3 attack, i.e., (c) and (d).

images and adversarial examples are highly entangled; see Fig-

ures 7a and 7c. In sharp contrast, by minimizing the SNN loss, the

representations for clean images and adversarial examples are mu-

tually isolated, as shown in Figures 7b and 7d, making adversarial

examples detectable.

6 CONCLUSION

This article has proposed a novel Vison Transformers (ViT) archi-

tecture, including a detector and a classi�er, which are bridged by a

newly developed adaptive ensemble. This ViT architecture enables

us to boost adversarial training to defend against adaptive attacks,

and to achieve a better trade-o� between standard accuracy and

robustness. Our key idea includes introducing a novel Multi-head

Self-Attention (MSA) mechanism to expose adversarial perturba-

tions for better detection and employing two decoders to extract

visual representations respectively from clean images and adver-

sarial examples so as to reduce the negative e�ect of adversarial

training on standard accuracy. Meanwhile, our adaptive ensemble

lowers potential adversarial e�ects upon encountering adversar-

ial examples by masking out a random subset of image patches

across input data. Extensive experiments have been conducted for

evaluation, showing that our solutions signi�cantly outperform

their state-of-the-art counterparts in terms of standard accuracy

and robustness.
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